{"id":198,"date":"2013-04-02T12:24:21","date_gmt":"2013-04-02T12:24:21","guid":{"rendered":"http:\/\/mathedup.dreamhosters.com\/?page_id=198"},"modified":"2015-06-30T15:50:20","modified_gmt":"2015-06-30T14:50:20","slug":"de-moivres-theorem","status":"publish","type":"page","link":"https:\/\/www.mathedup.co.uk\/key-stage-5\/further-pure\/further-pure-2\/de-moivres-theorem\/","title":{"rendered":"De Moivre’s theorem"},"content":{"rendered":"

De Moivre 1<\/a> – Powerpoint –\u00a0<\/span>Proving De Moivre\u2019s theorem and applications of De Moivre\u2019s theorem<\/p>\n

De Moivre 2<\/a> – Powerpoint –\u00a0The exponential form of Complex numbers<\/p>\n

De Moivre 3<\/a> – Powerpoint –\u00a0Roots of unity<\/p>\n

De Moivre 4<\/a> – Powerpoint –\u00a0The nth root of a complex number<\/p>\n

Roots of unity<\/a> – Smart Notebook<\/p>\n

Roots of unity in a complex plane<\/a> – Wolfram Mathematica player<\/a> – A lovely interactive visual. If you can’t download it, this Powerpoint<\/a> might be the next best thing.<\/p>\n