# Core 2 – Triangles, Sectors, Arcs

### Challenge 1

The diagram shows a triangle ABC with AB = 3 cm, AC = 4 cm and angle  $BAC = \theta$  radians.



The point D lies on AC such that AD = 3 cm, and ABD is a sector of a circle with centre A and radius 3 cm.

(a) Write down, in terms of  $\theta$ :

(i) the area of the sector ABD; (2 marks)

(ii) the area of triangle ABC. (2 marks)

#### Challenge 2

The diagram shows a shape ABCDE. The shape consists of a square ABCD, with sides of length 5 cm, and a sector ADE of a circle with centre A and radius 5 cm. The angle of the sector is  $\theta$  radians.





(a) Find the area of the sector ADE in terms of  $\theta$ .

- (2 marks)
- (b) The area of the sector ADE is a quarter of the area of the square ABCD.
  - (i) Find the value of  $\theta$ .

(2 marks)

(ii) Find the perimeter of the shape ABCDE.

(2 marks)

## Challenge 3

The acute angle  $\theta$  radians is such that

$$\sin\theta = \frac{5}{13}.$$

(a) (i) Show that  $\cos \theta = \frac{12}{13}$ .

(2 marks)

(ii) Find the value of  $\tan \theta$ , giving your answer as a fraction.

(2 marks)

(b) Use your calculator to find the value of  $\theta$ , giving your answer to three decimal places.

(1 mark)

(c) The diagram shows a sector of a circle of radius r cm and angle  $\theta$  radians. The length of the arc which forms part of the boundary of the sector is 5 cm.



(i) Show that  $r \approx 12.7$ .

(2 marks)

(ii) Find the area of the sector, giving your answer to the nearest square centimetre.

(3 marks)

#### Final Challenge





Figure 2

Figure 2 shows the quadrilateral *ABCD* in which AB = 6 cm, BC = 3 cm, CD = 8 cm, AD = 9 cm and  $\angle BAD = 60^{\circ}$ .

(a) Using the cosine rule, show that 
$$BD = 3\sqrt{7}$$
 cm. (4)

(b) Find the size of 
$$\angle BCD$$
 in degrees. (3)