Triangles, Sectors and Arcs

The diagram shows a triangle $A B C$ with $A B=3 \mathrm{~cm}, A C=4 \mathrm{~cm}$ and angle $B A C=\theta$ radians.

The point D lies on $A C$ such that $A D=3 \mathrm{~cm}$, and $A B D$ is a sector of a circle with centre A and radius 3 cm .
(a) Write down, in terms of θ :
(i) the area of the sector $A B D$;
(ii) the area of triangle $A B C$.

The diagram shows a shape $A B C D E$. The shape consists of a square $A B C D$, with sides of length 5 cm , and a sector $A D E$ of a circle with centre A and radius 5 cm . The angle of the sector is θ radians.

(a) Find the area of the sector $A D E$ in terms of θ.
(2 marks)
(b) The area of the sector $A D E$ is a quarter of the area of the square $A B C D$.
(i) Find the value of θ.
(ii) Find the perimeter of the shape $A B C D E$.

The acute angle θ radians is such that

$$
\sin \theta=\frac{5}{13} .
$$

(a) (i) Show that $\cos \theta=\frac{12}{13}$.
(ii) Find the value of $\tan \theta$, giving your answer as a fraction.
(b) Use your calculator to find the value of θ, giving your answer to three decimal places.
(c) The diagram shows a sector of a circle of radius $r \mathrm{~cm}$ and angle θ radians. The length of the arc which forms part of the boundary of the sector is 5 cm .

(i) Show that $r \approx 12.7$.
(ii) Find the area of the sector, giving your answer to the nearest square centimetre.
(3 marks)

Q	Solution	Marks	Total	Comments
4 (a)(i)	Use of $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$	M1		OE, e.g. Pythagoras
	$\cos \theta=\frac{12}{13}$ convincingly shown	A1	2	AG but condone no mention of \pm
(ii)	Use of $\tan \theta=\frac{\sin \theta}{\cos \theta}$	M1		OE, eg right-angled triangle
	$\tan \theta=\frac{5}{12}$	A1	2	
(b)	$\theta \approx 0.395$	B1	1	Condone AWRT 0.395 or 22.6°
(c) (i)	Formula for arc length stated	M1		or used
	$r \approx \frac{5}{0.395} \approx 12.7$	A1	2	AG (12.7)
(ii)	Formula for sector area stated	M1		or used
	Substitution of appropriate values	m1		$\text { not } \frac{1}{2}\left(12.7^{2}\right)(22.6)$
	Area is $\frac{1}{2}(12.7)^{2}(0.395) \approx 32 \mathrm{~cm}^{2}$	A1	3	Condone absence of units; accept AWRT 32
	Total		10	

Figure 2
Figure 2 shows the quadrilateral $A B C D$ in which $A B=6 \mathrm{~cm}, B C=3 \mathrm{~cm}, C D=8 \mathrm{~cm}$, $A D=9 \mathrm{~cm}$ and $\angle B A D=60^{\circ}$.
(a) Using the cosine rule, show that $B D=3 \sqrt{7} \mathrm{~cm}$.
(b) Find the size of $\angle B C D$ in degrees.
(c) Find the area of quadrilateral $A B C D$.
(a) $B D^{2}=6^{2}+9^{2}-(2 \times 6 \times 9 \times \cos 60)$

M1 A1
$B D^{2}=36+81-54=63$
$B D=\sqrt{63}=\sqrt{9 \times 7}=3 \sqrt{7} \mathrm{~cm}$
M1 A1
(b) $(3 \sqrt{7})^{2}=3^{2}+8^{2}-(2 \times 3 \times 8 \times \cos C)$ M1
$\cos C=\frac{9+64-63}{48}=\frac{5}{24}$
$\angle B C D=78.0^{\circ}$ (1dp)
M1 A1
(c) $=\left(\frac{1}{2} \times 6 \times 9 \times \sin 60\right)+\left(\frac{1}{2} \times 3 \times 8 \times \sin 77.975\right)$

M2
$=35.1 \mathrm{~cm}^{2}$ (3 sf)
A1
(10)

