Triangles, Sectors and Arcs

The diagram shows a triangle ABC with AB = 3 cm, AC = 4 cm and angle $BAC = \theta$ radians.

The point D lies on AC such that AD = 3 cm, and ABD is a sector of a circle with centre A and radius 3 cm.

- (a) Write down, in terms of θ :
 - (i) the area of the sector ABD;

(2 marks)

(ii) the area of triangle ABC.

(2 marks)

2(a)(i)	Area of sector $=\frac{1}{2}r^2\theta$	M1		For $\frac{1}{2}r^2\theta$
	$=0.5\times9\theta=4.5\theta~(\mathrm{cm}^2)$	A1	2	
(ii)	Area of triangle = $\frac{1}{2}AB \times AC \sin \theta$	M1		$\frac{1}{2}AB \times AC\sin\theta$
	$\dots = \frac{1}{2} 3 \times 4 \sin \theta = 6 \sin \theta \text{ (cm}^2\text{)}$	A1	2	

The diagram shows a shape ABCDE. The shape consists of a square ABCD, with sides of length 5 cm, and a sector ADE of a circle with centre A and radius 5 cm. The angle of the sector is θ radians.

(a) Find the area of the sector ADE in terms of θ .

(2 marks)

- (b) The area of the sector ADE is a quarter of the area of the square ABCD.
 - (i) Find the value of θ .

(2 marks)

(ii) Find the perimeter of the shape ABCDE.

(2 marks)

3 (a)	Sector area formula stated	M1		or used
	Sector area = $12.5 \theta \text{ (cm}^2\text{)}$	A1	2	Condone omission of units throughout
(b)(i)	Equating sector area to 6.25 $\theta = 0.5$	M1 A1	2	
(ii)	Arc length formula stated	M1		or used
	Perimeter = 22.5 (cm)	A1F	2	ft wrong value of θ
	Total		6	

The acute angle θ radians is such that

$$\sin\theta = \frac{5}{13}.$$

- (a) (i) Show that $\cos \theta = \frac{12}{13}$. (2 marks)
 - (ii) Find the value of $\tan \theta$, giving your answer as a fraction. (2 marks)
- (b) Use your calculator to find the value of θ , giving your answer to three decimal places. (1 mark)
- (c) The diagram shows a sector of a circle of radius r cm and angle θ radians. The length of the arc which forms part of the boundary of the sector is 5 cm.

- (i) Show that $r \approx 12.7$. (2 marks)
- (ii) Find the area of the sector, giving your answer to the nearest square centimetre.

 (3 marks)

Q	Solution	Marks	Total	Comments
4 (a)(i)	Use of $\sin^2 \theta + \cos^2 \theta \equiv 1$	M1		OE, e.g. Pythagoras
	$\cos\theta = \frac{12}{13}$ convincingly shown	A1	2	AG but condone no mention of ±
(ii)	Use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$	M1		OE, eg right-angled triangle
	$\tan\theta = \frac{5}{12}$	A1	2	
(b)	$\theta \approx 0.395$	B1	1	Condone AWRT 0.395 or 22.6°
(c) (i)	Formula for arc length stated	M1		or used
	$r \approx \frac{5}{0.395} \approx 12.7$	A1	2	AG (12.7)
(ii)	Formula for sector area stated	M1		or used
	Substitution of appropriate values	m1		not $\frac{1}{2}(12.7^2)(22.6)$
	Area is $\frac{1}{2}(12.7)^2$ (0.395) $\approx 32 \text{ cm}^2$	A1	3	Condone absence of units; accept AWRT 32
	Total		10	

Figure 2

Figure 2 shows the quadrilateral ABCD in which AB = 6 cm, BC = 3 cm, CD = 8 cm, AD = 9 cm and $\angle BAD = 60^{\circ}$.

(a) Using the cosine rule, show that
$$BD = 3\sqrt{7}$$
 cm. (4)

(b) Find the size of
$$\angle BCD$$
 in degrees. (3)

(a)
$$BD^2 = 6^2 + 9^2 - (2 \times 6 \times 9 \times \cos 60)$$
 M1 A1
 $BD^2 = 36 + 81 - 54 = 63$
 $BD = \sqrt{63} = \sqrt{9 \times 7} = 3\sqrt{7}$ cm M1 A1

(b)
$$(3\sqrt{7})^2 = 3^2 + 8^2 - (2 \times 3 \times 8 \times \cos C)$$
 M1
 $\cos C = \frac{9 + 64 - 63}{48} = \frac{5}{24}$
 $\angle BCD = 78.0^{\circ} \text{ (1dp)}$ M1 A1

(c) =
$$(\frac{1}{2} \times 6 \times 9 \times \sin 60) + (\frac{1}{2} \times 3 \times 8 \times \sin 77.975)$$
 M2
= 35.1 cm² (3sf) A1 (10)