FP4 Systems of Equations Challenge

Challenge 1

The equations

x + y - 2z = 23x - y + 6z = 26x + 5y - 9z = k

represent three planes, where k is a constant.

(a)	Show	v that this system of equations does not have a unique solution.	(2 marks)
(b)	Prov	(4 marks)	
(c)	(i)	Find the solution to this system in the case when $k = 11$.	(4 marks)
	(ii)	Interpret this solution with reference to the three planes.	(1 mark)

Challenge 2

Three simultaneous equations are

x - 3y + 2z = 3 x + y + az = bx - 2y + z = 2,

where a and b are constants.

- (a) In the case where $a \neq -2$, solve the equations in terms of a and b. (7 marks)
- (b) Give, with reasons, a geometrical interpretation of the planes represented by these three equations in the case where a = -2 and $b \neq -1$. (3 marks)

Challenge 3

A matrix **M** is defined by

	3	1	8]
M =	2	-1	5	
	1	2	a	

(a)]	Find det M in terms of a .	(3 marks)

(b) Find the value of a for which the matrix **M** is singular. (1 mark)

(c) (i) In the case
$$a = 2$$
, find \mathbf{M}^{-1} . (6 marks)

(ii) Hence, or otherwise, solve

$$3x + y + 8z = 3$$

$$2x - y + 5z = 0$$

$$x + 2y + 2z = 2.$$
 (4 marks)

Final Challenge

Two planes are represented by the equations

(a) Find the equations of the line of intersection of the planes, giving your answer in the form

$$\frac{x-a}{l} = \frac{y-b}{m} = \frac{z-c}{n}.$$
(6 marks)

(b) Show that this line also lies in the plane with equation

$$4x - 2y + z = 33.$$
 (3 marks)

