Surds

Express $(4 - \sqrt{7})(5 + 2\sqrt{7})$ in the form $a + b\sqrt{7}$, where a and b are integers. (3 marks)

- (a) Express each of the following in the form $k\sqrt{5}$:
 - (i) $\sqrt{45}$

(ii)
$$\frac{20}{\sqrt{5}}$$
 (3 marks)

(b) Hence write $\sqrt{45} + \frac{20}{\sqrt{5}}$ in the form $n\sqrt{5}$, where *n* is an integer. (1 mark)

1	$20 - 5\sqrt{7} + 8\sqrt{7} - 2\sqrt{7}\sqrt{7}$ $= 6 + 3\sqrt{7}$	M1 B1 A1	3	At least 3 terms
	Total		3	

Question Number and part	Solution	Marks	Total	Comments
1(a)(i)	3√5	B1		
(ii)	$\frac{1}{\sqrt{5}} = \frac{\sqrt{5}}{5}$	M1		Clear attempt to rationalise denominator Eg. $\times \frac{\sqrt{5}}{\sqrt{5}}$
	$Ans = 4\sqrt{5}$	A1	3	$\sqrt{5}$ sc B2 for correct answer sc B1 for 8.9442 from calculator $\Rightarrow k = 4$
(b)	7√5	B1√	1	ft their answers from (a) - must be integer
·	Total		4	

- (a) Express $(\sqrt{7} + 1)^2$ in the form $a + b\sqrt{7}$, where a and b are integers. (2 marks)
- (b) Hence express $\frac{\left(\sqrt{7}+1\right)^2}{\left(\sqrt{7}+2\right)}$ in the form $p+q\sqrt{7}$, where p and q are rational numbers.

Question	Solution	Marks	Total	Comments
3 (a)	= $\left(\sqrt{7}\right)^2 + 2\sqrt{7} + 1$	M1		Expansion to 3 terms or better
	$\dots = 8 + 2\sqrt{7}$	A1	(2)	Accept ' $a = 8, b = 2$ '
(b)	= $\frac{"(8 + 2\sqrt{7})!(\sqrt{7} - 2)}{(\sqrt{7} + 2)(\sqrt{7} - 2)}$	M1		Multiplying by 'conjugate'
	$\dots = \frac{4\sqrt{7} - 2}{3}$	A1 A1	(3)	Denominator = 7 – 4 or better Numerator correct
		TOTAL	(5)	

Express each of the following in the form $p + q\sqrt{3}$:

(a)
$$(2+\sqrt{3})(5-2\sqrt{3});$$
 (3 marks)

(b)
$$\frac{26}{4-\sqrt{3}}$$
.

3(a)	$10 - 4\sqrt{3} + 5\sqrt{3} - 2(\sqrt{3})^{2}$ $= 6 \text{ or } 2 \times 3$ $= 4 + \sqrt{3}$	M1 B1	3	At least 3 terms not necessarily correct Implied by $4+k\sqrt{3}$ or $16+k\sqrt{3}$
(b)	$\frac{26}{4 - \sqrt{3}} \times \frac{4 + \sqrt{3}}{4 + \sqrt{3}}$ $= 8 + 2\sqrt{3}$ denominator = 13	M1 A1 A1	3	Allow 16 – 3 Must be simplified to this
	Total		6	

(a) Write $\sqrt{80}$ in the form $c\sqrt{5}$, where c is a positive constant.

A rectangle R has a length of $(1 + \sqrt{5})$ cm and an area of $\sqrt{80}$ cm².

(b) Calculate the width of R in cm. Express your answer in the form $p + q\sqrt{5}$, where p and q are integers to be found.

(4)

(1)

Question Number	Scheme	3	Marks
6.	(a) $80 = 5 \times 16$ $\sqrt{80} = 4\sqrt{5}$		B1 (1)
	Method 1	Method 2	
	(b) $\frac{\sqrt{80}}{\sqrt{5}+1}$ or $\frac{c\sqrt{5}}{\sqrt{5}+1}$	$(p+q\sqrt{5})(\sqrt{5}+1)=\sqrt{80}$	B1ft
	$= \frac{\sqrt{80}}{\sqrt{5} + 1} \times \frac{\sqrt{5} - 1}{\sqrt{5} - 1} \text{or} \frac{\sqrt{80}}{1 + \sqrt{5}} \times \frac{1 - \sqrt{5}}{1 - \sqrt{5}}$	$\boxed{p\sqrt{5+q}\sqrt{5+p+5}q} = 4\sqrt{5}$	M1
	$=\frac{20-4\sqrt{5}}{4}$ or $\frac{4\sqrt{5}-20}{-4}$	p + 5 q = 0 p + q = 4 p = 5, q = -1	A1
	$=5-\sqrt{5}$	p = 5, q = -1	Alcao
			(4) (5 marks)