FP2 - Summations and proof

Challenge I
(a) Show that

$$
\frac{1}{r!}-\frac{1}{(r+1)!} \equiv \frac{r}{(r+1)!} .
$$

(2 marks)
(b) Hence find

$$
\sum_{r=1}^{n} \frac{r}{(r+1)!}
$$

Challenge 2

Prove by induction that, for all integers $n \geqslant 1$,

$$
\sum_{r=1}^{n} \frac{1}{(3 r-2)(3 r+1)}=\frac{n}{3 n+1}
$$

Challenge 3

(a) Show that $\frac{2 r-1}{(r-1) r}-\frac{2 r+1}{r(r+1)} \equiv \frac{2}{(r-1)(r+1)}$.
(b) Hence, using the method of differences, prove that

$$
\sum_{r=2}^{n} \frac{2}{(r-1)(r+1)}=\frac{3}{2}-\frac{2 n+1}{n(n+1)}
$$

(c) Deduce the sum of the infinite series

$$
\frac{1}{1 \times 3}+\frac{1}{2 \times 4}+\frac{1}{3 \times 5}+\ldots+\frac{1}{(n-1)(n+1)}+\ldots
$$

Final Challenge

The function f is given by

$$
\mathrm{f}(n)=n^{3}+(n+1)^{3}+(n+2)^{3}
$$

(a) Simplify, as far as possible, $\mathrm{f}(n+1)-\mathrm{f}(n)$.
(b) Prove by induction that the sum of the cubes of three consecutive positive integers is divisible by 9 .

