One of the roots of the cubic equation

$$x^3 + kx - 80 = 0$$
,

where k is real, is -2 + 4i. Find the other two roots and the value of k.

(5 marks)

Q	Solution	Marks	Total	Comments
1	-2-4i is a root	B1		
	Sum of roots = 0 $\rightarrow -2 + 4i - 2 - 4i + j = 0$	M1		O.E. $\sum \alpha = k$, $\sum \alpha \beta = 80$ M0
	j=4	A1√		
	$f(4) = 4^3 + 4k - 80 = 0$	M1		
	k=4	A1√	5	k must be real
	Alternative $(x-(-2+4i))(x-(-2-4i)) = x^2+4x+20$ either multiply or divide subsequently $\gamma = 4$ $k = 4$ Substitution of $-2+4i$ into equation unless complete and correct	(B1) (M1) (A1√A1√) (M0)		
	Total		5	

The cubic equation

$$x^3 + 2px^2 - 8 = 0, \quad \text{where } p \text{ is real,}$$

has roots α , β and $\alpha + \beta$.

(a) Show that:

(i)
$$\alpha + \beta = -p$$
; (2 marks)

(ii)
$$\alpha\beta = -\frac{8}{p}$$
. (2 marks)

(b) Show that
$$p = 2$$
. (5 marks)

Q	Solution	Marks	Total	Comments
1 (a)(i)	$\alpha + \beta + (\alpha + \beta) = -2p$ $\alpha + \beta = -p$	M1		Must show some evidence of how the result is arrived at
	$\alpha + \beta = -p$	A 1	2	
(ii)	Product of roots $\alpha \beta \gamma = \alpha \beta (\alpha + \beta) = 8$	M1		
	$\alpha \beta = \frac{8}{-p} = -\frac{8}{p}$	A1	2	Must show some evidence of how the result is arrived at
(b)	$\alpha \beta + \beta \gamma + \gamma \alpha = \alpha \beta + \beta (\alpha + \beta) + \alpha (\alpha + \beta) = 0$	M1A1		
	$0 = \alpha \beta + (\alpha + \beta)^2$	A1F		could be a mixture of α , β and p
				e.g. $-\frac{8}{p} - p\alpha - p\beta$
	$-\frac{8}{p} = -(-p)^2$	M1		for an equation in p only
	p=2	A 1	5	AG
	Total		9	

The roots of the cubic equation

$$x^3 - 6x^2 + 4px - p^2 = 0$$

are $\beta - k$, β and $\beta + k$.

(a) Show that

(i)
$$\beta = 2$$
, (2 marks)

(ii)
$$k^2 = 4(3-p)$$
, (3 marks)

(iii)
$$k^2 = 4 - \frac{1}{2}p^2$$
. (2 marks)

(b) Hence find

(i) the value of
$$p$$
, (3 marks)

(ii) the two non-real roots of the cubic equation giving your answers in the form a + ib, where a and b are real. (3 marks)

Q	Solution	Marks	Total	Comments
6 (a)(i)	$\beta - k + \beta + \beta + k = -(-6), \beta = 2$	M1A1	2	AG
(ii)	2(2+k)+2(2-k)+(2+k)(2-k)=4p	M1A1		Allow M1 if there is a sign error
	2(2+k)+2(2-k)+(2+k)(2-k)=4p $k^{2}=4(3-p)$	A 1	2	1
	<i>(S P)</i>	A1	3	AG
(iii)	$(2-k)2(2+k)=p^2$	M1		
	$(2-k)2(2+k) = p^2$ $k^2 = 4 - \frac{1}{2}p^2$	A1	2	AG
	$\kappa = 1 - \frac{1}{2}P$	711		No
(b)(i)	Elimination of k , or substitution of 2 into			
	cubic	M1		
	$p^{2} - 8p + 16 = 0$ $(p-4)^{2} = 0, p = 4$	A 1		
	$(p-4)^2=0, p=4$	A1F	3	
(ii)	$k = \pm 2i$	M1A1		allow B1 for single answer 2+2i
	Roots 2±2i	A1F	3	f.t. if k is complex
	10000 2-21	1111		The first of the f
	Total		13	

(a) (i) Express (1-i)(3-i) in the form a+ib, where a and b are real. (2 marks)

(ii) Show that $(1-i)^3 = -2-2i$. (2 marks)

(b) (i) Show that 1 - i is a root of the cubic equation

$$z^{3} + iz^{2} - (3 - i)z + 2(1 - i) = 0.$$
 (3 marks)

(ii) Given that the other two roots of the cubic equation are α and β , show that

$$\alpha + \beta = -1$$

and find $\alpha\beta$. (3 marks)

(c) Hence solve the cubic equation completely.

(3 marks)

2 (a)(i)	(1-i)(3-i) = 2-4i	M1		for attempt to multiply or use
		A 1	2	$i^2 = -1$
(ii)	$(1-i)^3 = (1-3i+3i^2-i^3) = -2-2i$	M1 A1	2	for any complete method
(b)(i)	$(1-i)^3 + i(1-i)^2 - (3-i)(1-i) + 2-2i$ = 0 shown	M1A1√ A1	3	CAO
(ii)	$\alpha + \beta + 1 - i = -i$ $\therefore \alpha + \beta = -1$	B1		
	$\alpha + \beta + 1 - i = -i \qquad \therefore \alpha + \beta = -1$ $\alpha\beta(1 - i) = -2(1 - i)$ $\alpha\beta = -2$	M1 A1	3	allow if sign error
(c)	Equation for α , β is $z^2 + z - 2 = 0$	M1A1√		
	Roots are $(1-i)$, 1 , -2	A 1√	3	
	Total		13	