2 Axes Ox, Oy and Oz are defined respectively in the north, west and vertically upwards directions. Unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are defined in the x, y and z directions.

At 3 pm, an aeroplane, A, is 1.7 miles high above a radar beacon, R.

At 2 pm, a weather balloon, B, was released from a point Q with position vector $(20\mathbf{i} + 5\mathbf{j} + 0.1\mathbf{k})$ relative to R.

The units of distance are miles.

The weather balloon has a constant velocity (10i + 15j + 3k) miles per hour.

(a) Find the position vector of B relative to R at 3 pm.

(2 marks)

At 3 pm, the velocity of A is (280i + 265j + 10k) miles per hour.

Assume that the velocity of the plane is constant for the next 30 minutes.

(b) Find the velocity of B relative to A during these 30 minutes.

(1 mark)

(c) Find the distance, in miles, between the aeroplane and the weather balloon at 3.30 pm.

(2 marks)

				(2 marks)
2 (a)	B relative to R at 3 pm is			
	$ \begin{pmatrix} 20\\5\\0.1 \end{pmatrix} + \begin{pmatrix} 10\\15\\3 \end{pmatrix} $	M1		
	$= \begin{pmatrix} 30\\20\\3.1 \end{pmatrix}$	A1	(2)	
(b)	Velocity of B relative to A is $\mathbf{v}_B - \mathbf{v}_A$			
	$= \begin{pmatrix} 10\\15\\3 \end{pmatrix} - \begin{pmatrix} 280\\265\\10 \end{pmatrix}$			
	$= \begin{pmatrix} -270 \\ -250 \\ -7 \end{pmatrix}$	B1	(1)	
(c)	Position of B relative to A is			
	$ \begin{pmatrix} 30\\20\\1.4 \end{pmatrix} + \begin{pmatrix} -270\\-250\\-7 \end{pmatrix} \times 0.5 = \begin{pmatrix} -105\\-105\\-2.1 \end{pmatrix} $	M1		
	Distance = $\sqrt{105^2 + 105^2 + 2.1^2} = 149$ miles	A 1	(2)	
		TOTAL	(5)	

3 Axes Ox, Oy and Oz are defined respectively in the East, North and vertically upwards directions. Unit vectors i, j and k are defined in the x, y and z directions respectively. The units of distance are metres and the units of velocity are metres per second.

A small plane, P, is flying between two airports, A and B, on the two islands shown.

A boat, T, is travelling between two harbours, C and D, on the two islands.

At 10 am, the plane leaves A and the boat leaves C. Harbour C has position vector $80\mathbf{i} - 6000\mathbf{j}$ relative to A.

After take-off, the plane travels with constant velocity $30\mathbf{i} - 25\mathbf{j} + 2.1\mathbf{k}$. After leaving harbour, the boat has a constant velocity $18\mathbf{i} - \mathbf{j}$. Time t is measured in seconds after 10 am.

- (a) State the position of T relative to P at 10 am. (1 mark)
- (b) Find the velocity of T relative to P. (2 marks)
- (c) Find an expression for the distance, S metres, which the plane and the boat are apart at time t. You do **not** need to simplify your expression. (4 marks)
- (d) Find t when S^2 is a minimum. Hence state the time at which the plane and the boat are nearest to each other. (4 marks)
- (e) Show that at 10.04 am the distance between the plane and the boat is less than 3 km.

 (3 marks)

3 (a)	$\mathbf{r}_{T \text{rel } P} = \mathbf{r}_{T} - \mathbf{r}_{P}$			
	= 80i - 6000j	В1	1	
	- 001 0000 j	Di	1	
(b)	$\mathbf{v}_{T \text{ rel } P} = \mathbf{v}_T - \mathbf{v}_P$	M1		
		IVII		
	$= \begin{pmatrix} 18 \\ -1 \\ 0 \end{pmatrix} - \begin{pmatrix} 30 \\ -25 \\ 2.1 \end{pmatrix}$			
	= -1 - -25			
	(0) (2.1)			
	(-12)			
	$= \begin{pmatrix} -12\\24\\24 \end{pmatrix}$			
	-21	A1	2	
	(2)			
(c)	(80 – 12t)			
	$\mathbf{r}_{T \text{ rel } P} = \begin{pmatrix} 80 - 12t \\ -6000 + 24t \\ -2.1t \end{pmatrix}$			
	$r_{T \text{ rel } P} = -6000 + 24t$	Ml Al		
	(-2.1 <i>t</i>)			
	$D = \left\{ \left(80 - 12t\right)^2 + \left(-6000 + 24t\right)^2 + \left(2.1t\right)^2 \right\}^{\frac{1}{2}}$	Ml Al	4	
	D = [(00 121) 1 (0000 121) 1 (2.11)]			
(d)	$\frac{\mathrm{d}D^2}{\mathrm{d}t} = -24(80 - 12t) + 48(-6000 + 24t) + 8.82t$			
S. 60	$\frac{dD}{dt} = -24(80 - 12t) + 48(-6000 + 24t) + 8.82t$	M1		
	u i			
	dD^2			
	$\frac{\mathrm{d}D^2}{\mathrm{d}t} = 0$ \Rightarrow	M1		
	-1920 + 288t - 288000 + 1152t + 8.82t = 0			
	1448.82t = 289920	A1		
	t = 200.10			
	∴ time is 10.03 and 20 sec	Al	4	
(e)	When $t = 240$	B1		
(6)	when t = 240	ы		
	$D = \left\{2800^2 + 240^2 + 504^2\right\}^{\frac{1}{2}}$	M1		
	$D = \{2800 + 240 + 304\}$ = 2855m			
	< 3km	A1	3	
	Total		14	

5 Axes Ox, Oy and Oz are defined respectively in the East, North and vertically upwards directions. Unit vectors i, j and k are defined in the x, y and z directions. The units of distance are metres and the units of velocity are metres per minute.

At 8 am, a hot air balloon, B, is 120 metres above a rock, R, situated on level ground in a wildlife national park. A tourist in the hot air balloon sees a lion, L, in the distance at a point A, which has position vector $200\mathbf{i} - 60\mathbf{j}$ relative to R.

The lion is walking with constant velocity 4i + 8j.

The balloon has a constant velocity of 15i + 6j - 3.2k.

(a) Find the position of L relative to B at 8 am.

(2 marks)

- (b) Assume that the velocity of the lion and the balloon are constant for the next 25 minutes. Time t is measured in minutes after 8 am.
 - (i) Find the velocity of L relative to B during these 25 minutes.

(2 marks)

- (ii) Find an expression for the distance, in metres, which the lion and the hot air balloon are apart at time t, where 0 < t < 25. You do **not** need to simplify your expression. (2 marks)
- (iii) Hence find the time at which the lion and the balloon are nearest to each other.

(4 marks)

5(a)	$r_{\rm L} - r_{\rm B}$	M1	-	position of L relative to B
	$= \begin{pmatrix} 200 \\ -60 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ 120 \end{pmatrix}$			
	(0) (120)			
	(200)			(200)
	$= \begin{pmatrix} 200 \\ -60 \\ -120 \end{pmatrix}$	Al	2	M1 only for $\begin{pmatrix} 200 \\ -60 \end{pmatrix}$
	(-120)			(-00)
(b)(i)	$v_{\rm L} - v_{\rm B}$	M1		velocity of L relative to B
	(4) (15)			
	$= \begin{pmatrix} 4 \\ 8 \\ 0 \end{pmatrix} - \begin{pmatrix} 15 \\ 6 \\ -3.2 \end{pmatrix}$			
	(0) (-3.2)			
	(-11)			
	$= \begin{pmatrix} -11 \\ 2 \\ 3 \end{pmatrix}$		_	
	(3.2)	A1	2	
200	() () () ()			
(ii)	Distance (at time t) is $\begin{pmatrix} 200 \\ -60 \\ -120 \end{pmatrix} + t \begin{pmatrix} -11 \\ 2 \\ 3.2 \end{pmatrix}$	M1		
	FOR THE PARTY OF T			
	$\therefore D = \{(200 - 11t)^2 + (-60 + 2t)^2 + (-120 + 3.2)^2 + $	$(t)^{2}$ $^{\frac{1}{2}}$		
	Al		2	
(iii)	dp^2			
	$\frac{dD^2}{dt} = -22(200 - 11t) + 4(-60 + 2t) + 6.4(-120 + 3.2t) \text{ M1A1}$			
	$\frac{\mathrm{d}D^2}{\mathrm{d}t} = 0 \Rightarrow$			
	$\frac{dt}{dt} = 0$ $-4400 + 242t - 240 + 8t - 768 + 20.48t = 0$			
	-4400 + 242t - 240 + 8t - 768 + 20.48t = 0 $270.48t = 5408$	M1		
	t = 19.99	0.414		
	Time is 8.20am	Al	4	20 min etc M1 A1 M1 only
	Total	44	10	

7 The unit vectors **i** and **j** are defined in the east and north directions respectively. The unit of distance is kilometres and the unit of velocity is kilometres per hour.

Initially, two ships P and Q are 2 kilometres apart with P due south of Q.

Ship Q is travelling with velocity $10\sqrt{3}\mathbf{i} - 10\mathbf{j}$ kilometres per hour.

The maximum speed of ship P is 8 kilometres per hour.

- (a) Find the speed of ship Q, and the bearing on which it is travelling. (3 marks)
- (b) Ship P travels to ensure that it approaches Q as closely as possible.
 - (i) Find the direction in which P travels.

(4 marks)

- (ii) Show that the velocity of Q relative to P is $11\mathbf{i} 15\mathbf{j}$ correct to 2 significant figures. (3 marks)
- (iii) Find the shortest distance between the ships.

(4 marks)

. \	in) Tind the shortest distance between	JOH THE	ompo.	(+ marks)
7(a)	Speed of Q is 20 km/h	B1		
	$\tan \theta = \frac{10\sqrt{3}}{10}$	M1		
	I		2	
	Bearing is 120°	A1	3	
b(i)	Ship P will travel so that v_P is perpendicular to the relative velocity Q $v_Q; 20$ $v_P; 8$	M1		(If not gained, can gain M1 in (ii) and all marks in (iii))
	$\sin\theta = \frac{8}{20} = 0.4$	m1		Dependent on M1 above
	$\theta = 23.6^{\circ}$	A1		
	Bearing of ship P is 054°	B1	4	Dependent on first M1 Accept 053.6°
(ii)	Velocity of <i>P</i> is $8 \sin 53.6\mathbf{i} + 8 \cos 53.6\mathbf{j}$ Velocity of <i>Q</i> relative to <i>P</i> is $v_Q - v_P$	B1		Dependent on M1,M1 in (i)
	= $(10\sqrt{3} \mathbf{i} - 10\mathbf{j}) - (6.439\mathbf{i} + 4.7498\mathbf{j})$ = $10.88\mathbf{i} - 14.75\mathbf{j}$	M1		
	= $11i - 15j$ [to 2 significant figures]	A1	3	