2 The quadratic equation

$$x^2 + px + 2 = 0$$

has roots α and β .

- (a) Write down the value of $\alpha\beta$. (1 mark)
- (b) Express in terms of p:

(i)
$$\alpha + \beta$$
; (1 mark)

(ii)
$$\alpha^2 + \beta^2$$
. (2 marks)

(c) Given that $\alpha^2 + \beta^2 = 5$, find the possible values of p. (1 mark)

	Total		5	
(c)	$p^2 - 4 = 5 \Rightarrow p = \pm 3$	A1F	1	No ft from $\alpha^2 + \beta^2 = (\alpha + \beta)^2$
	$= p^2 - 4$	A1F	2	ft from their $(\alpha + \beta)$ and $\alpha\beta$
(ii)	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	M1		correct use of $(\alpha + \beta)^2 - 2\alpha\beta$
(b)(i)	$\alpha + \beta = -p$	B1	1	if seen anywhere
2(a)	$\alpha\beta = 2$	B1	1	

1 (a) The quadratic equation $2x^2 - 6x + 1 = 0$ has roots α and β .

Write down the numerical values of:

(i)
$$\alpha\beta$$
; (1 mark)

(ii)
$$\alpha + \beta$$
. (1 mark)

(b) Another quadratic equation has roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$.

Find the numerical values of:

(i)
$$\frac{1}{\alpha} \times \frac{1}{\beta}$$
; (1 mark)

(ii)
$$\frac{1}{\alpha} + \frac{1}{\beta}$$
. (2 marks)

(c) Hence, or otherwise, find the quadratic equation with roots $\frac{1}{\alpha}$ and $\frac{1}{\beta}$, writing your answer in the form $x^2 + px + q = 0$. (2 marks)

Q	Solution	Marks	Total	Comments
	$\alpha\beta = \frac{1}{2}$ $\alpha + \beta = 3$	B1 B1	2	
(b)(i)	$\frac{1}{\alpha} \times \frac{1}{\beta} = \frac{1}{\alpha \beta} = 2$	B1√	1	
(ii)	$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta} = 6$	M1A1✓	2	
(c)	$x^{2} - (sum)x + (product) = 0$ $x^{2} - 6x + 2 = 0$	M1 A1√		Replace x by $\frac{1}{x}$ $2\left(\frac{1}{x}\right)^2 - 6\left(\frac{1}{x}\right) + 1 = 0$ $\frac{2}{x^2} - \frac{6}{x} + 1 = 0 \times \text{by } x^2 \text{ to give}$ $x^2 - 6x + 2 = 0$
	Total		7	

1 (a) The roots of the quadratic equation $x^2 + 4x - 3 = 0$ are α and β .

Without solving the equation, find the value of:

(i)
$$\alpha^2 + \beta^2$$
;

(ii)
$$\left(\alpha^2 + \frac{2}{\beta}\right) \left(\beta^2 + \frac{2}{\alpha}\right)$$
. (6 marks)

(b) Determine a quadratic equation with integer coefficients which has roots

$$\left(\alpha^2 + \frac{2}{\beta}\right)$$
 and $\left(\beta^2 + \frac{2}{\alpha}\right)$. (4 marks)

Question	Solution	Marks	Total	Comments
Number and part			marks	
l(a)(i)	$\alpha + \beta = -4;$ $\alpha\beta = -3$	B1		Likely to be earned in (ii)
	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ $= 16 + 6 = 22$	M 1		oe
		A1		
(ii)	$\alpha^2 \beta^2 + 2(\alpha + \beta) + \frac{4}{\alpha \beta}$	В1		
	$9-8-\frac{4}{3}$	M1		Substitution into similar form as above
	$=-\frac{1}{3}$	A1	6	
(b)	Sum of roots $= \alpha^2 + \beta^2 + \frac{2}{\alpha} + \frac{2}{\beta}$			
	$=\alpha^2+\beta^2+\frac{2}{\alpha\beta}(\alpha+\beta)$	M1		
	$=22+\frac{2}{-3}\times -4 = \frac{74}{3}$	Al		
	New equation $y^2 - (\text{sum of new roots}) y + \text{product} = 0$	M 1		
	$\Rightarrow y^2 - \frac{74}{3}y - \frac{1}{3} = 0$			
	$\Rightarrow 3y^2 - 74y - 1 = 0$	A1ft	4	(ft any variable fractional values)
	Total		10	Must have = 0

- **9** The roots of the quadratic equation $x^2 3x + 1 = 0$ are α and β .
 - (a) Without solving the equation:

(i) show that
$$\alpha^2 + \beta^2 = 7$$
; (3 marks)

(ii) find the value of
$$\alpha^3 + \beta^3$$
. (3 marks)

(b) (i) Show that
$$\alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2$$
. (1 mark)

(ii) Hence find the value of
$$\alpha^4 + \beta^4$$
. (2 marks)

(c) Determine a quadratic equation with integer coefficients which has roots $(\alpha^3 - \beta)$ and $(\beta^3 - \alpha)$.

Question Number and part	Solution	Marks	Total	Comments
•	$\alpha + \beta = 3;$ $\alpha\beta = 1$	B1		Withhold if obviously incorrect in (ii)
	$\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$	M1		
	=9-2=7	A1	3	ag However, condone $(-3)^2$
(ii)	$\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2)$	M1 A1		Good attempt at any equivalent Correct formula
	= 18	A1	3	Correct formula
(b)(i)	$\left(\alpha^2 + \beta^2\right)^2 = \alpha^4 + 2\alpha^2\beta^2 + \beta^4$			
	$(\alpha^2 + \beta^2)^2 = \alpha^4 + 2\alpha^2\beta^2 + \beta^4$ $\Rightarrow \alpha^4 + \beta^4 = (\alpha^2 + \beta^2)^2 - 2(\alpha\beta)^2$	B1	1	ag Be generous here.
(ii)	$\alpha^4 + \beta^4 = 49 - 2 = 47$	M1 A1	2	Substitute candidate's $\alpha\beta$
(c)	Sum of roots = $\alpha^3 + \beta^3 - (\alpha + \beta)$ = 15	M1 A1		
	Product = $(\alpha \beta)^3 + \alpha \beta - (\alpha^4 + \beta^4)$	M1		Condone one slip
	= 1+1-47 = -45	A1		
	New equation			
	$y^2 - 15y - 45 = 0$	B1√	5	ft any variable, integer coefficients Must have = 0
	Total		14	