Quadratic Equations

(a) (i) Express $x^{2}+12 x+11$ in the form $(x+a)^{2}+b$, finding the values of a and b.
(ii) State the minimum value of the expression $x^{2}+12 x+11$.
(1 mark)
(b) Determine the values of k for which the quadratic equation

$$
x^{2}+3(k-2) x+(k+5)=0
$$

has equal roots.
(4 marks)

Question	Solution	Marks	Total Marks	Comments
$5(\mathrm{a})(\mathrm{i})$ (ii) (b)	$\begin{aligned} & (x+6)^{2}+11-36 \\ & \quad b=-25 \\ & \text { Minimum value of } b \text { (follow through) } \\ & \begin{array}{l} -25 \\ 9(k-2)^{2}-4(k+5) \\ \quad 9 k^{2}-40 k+16=0 \\ (k-4)(9 k-4) \text { or formula } \\ k=4, \frac{4}{9} \end{array} \\ & \hline \end{aligned}$	B1 B1 B1 \checkmark M1 A1 M1 A1	(2) (1) (4)	or equivalent Use of $b^{2}-4 a c$ factors or good attempt at quadratic
		TOTAL	7	

The quadratic equation

$$
x^{2}+(3-k) x+5-k^{2}=0
$$

is to be considered for different values of the constant k.
(a) When $k=7$:
(i) show that $x^{2}-4 x-44=0$;
(1 mark)
(ii) find the roots of this equation, giving your answers in the form $a+b \sqrt{3}$, where a and b are integers.
(2 marks)
(b) When the quadratic equation $x^{2}+(3-k) x+5-k^{2}=0$ has equal roots:
(i) show that $5 k^{2}-6 k-11=0$;
(3 marks)
(ii) hence find the possible values of k.
(2 marks)

5(a)(i)	$\begin{aligned} & x^{2}+(3-7) x+5-49=0 \\ & \Rightarrow x^{2}-4 x-44=0 \end{aligned}$	B1	1	Be convinced - no missing brackets etc ag \quad Must have $=0$
(ii)	Use of quadratic equation formula or attempt to complete square $\Rightarrow(x=) 2 \pm 4 \sqrt{3}$	M1 A1	2	Condone one slip $\frac{4 \pm \sqrt{192}}{2}$
(b)(i)	$\begin{array}{ll} \text { Discriminant } & b^{2}-4 a c \\ (3-k)^{2}-4\left(5-k^{2}\right) & \\ & \Rightarrow 5 k^{2}-6 k-11=0 \end{array}$	$\begin{aligned} & \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \mathrm{~A} \end{aligned}$	3	Used - must involve k $\begin{aligned} & 9-6 k+k^{2}-20+4 k^{2} \\ & \text { ag must use " }=0 \text { " condition } \end{aligned}$
(ii)	$(5 k-11)(k+1)=0$	M1		Attempt to solve or factorise
	$\Rightarrow k=-1, \quad \frac{11}{5}$	A1	2	
	Total		8	

(a) (i) Express $x^{2}+8 x+11$ in the form $(x+p)^{2}+q$.
(2 marks)
(ii) Hence, or otherwise, find the coordinates of the minimum point of the curve with equation $y=x^{2}+8 x+11$.
(2 marks)
(b) Describe in detail the geometrical transformation which maps the graph of $y=x^{2}$ onto the graph of $y=x^{2}+8 x+11$.
(3 marks)
(c) Determine the condition on k for which the equation

$$
x^{2}+8 x+11-k=0
$$

has no real solutions.
(3 marks)

Question Number and part	Solution	Marks	Total marks	Comments
6(a)(i)	$(x+4)^{2}-5$	B1		$p=4 ; \quad q=-5$
(ii)	Minimum ($-4,-5$) or $x=-4, \quad y=-5$	B1	2	
		B1 \downarrow		
		B1 \checkmark	2	ft their p and q (or correct)
(b)	Translation	M1		M1 for "shift" if one term correct or
		A1		
		A1	3	[*] if one term correct, etc
(c)	No real roots when$\begin{aligned} & \left(b^{2}-4 a c\right)<0 \\ & 64-4(11-k) \end{aligned}$	B1		May be stated and not used
		M1		Condone sign error with k (or one slip)
		A1	3	May be part of quadratic equation formula cso
	Total		10	

The graph of $y=3(x+1)^{2}$ is sketched below.

(a) Describe fully a sequence of geometrical transformations that would map the graph of $y=x^{2}$ onto the graph of $y=3(x+1)^{2}$.
(b) (i) Express $3(x+1)^{2}$ in the form $p x^{2}+q x+r$.
(1 mark)
(ii) Find the gradient of the curve with equation $y=3(x+1)^{2}$ at the point where $x=4$.
(3 marks)
(c) (i) Show that the curve with equation $y=3(x+1)^{2}$ and the line with equation $y=k x-9$ intersect when

$$
3 x^{2}+(6-k) x+12=0
$$

(1 mark)
(ii) Find the values of k for which the quadratic equation

$$
3 x^{2}+(6-k) x+12=0
$$

has equal roots.
(4 marks)
(iii) State the geometrical relationship between the line $y=k x-9$ and the curve $y=3(x+1)^{2}$ for these values of k.

