Quadratic Equations

(a) (i) Express $x^2 + 12x + 11$ in the form $(x + a)^2 + b$, finding the values of *a* and *b*. (2 marks)

- (ii) State the minimum value of the expression $x^2 + 12x + 11$. (1 mark)
- (b) Determine the values of k for which the quadratic equation

$$x^{2} + 3(k-2)x + (k+5) = 0$$

has equal roots.

(4 marks)

Question	Solution	Marks	Total Marks	Comments
5 (a)(i)	$(x+6)^2+11-36$	B 1		or equivalent
	<i>b</i> = -25	B 1	(2)	
(ii)	Minimum value of b (follow through) -25	B1 √	(1)	
(b)	$9(k-2)^{2} - 4(k+5)$ $9k^{2} - 40k + 16 = 0$	M1		Use of $b^2 - 4ac$
	$9k^2 - 40k + 16 = 0$	A1		
	(k-4)(9k-4) or formula	M1		factors or good attempt at quadratic
	$k = 4 , \frac{4}{9}$	A1	(4)	
		TOTAL	7	

The quadratic equation

$$x^2 + (3-k)x + 5 - k^2 = 0$$

is to be considered for different values of the constant k.

- (a) When k = 7:
 - (i) show that $x^2 4x 44 = 0$; (1 mark)
 - (ii) find the roots of this equation, giving your answers in the form $a + b\sqrt{3}$, where a and b are integers. (2 marks)
- (b) When the quadratic equation $x^2 + (3 k)x + 5 k^2 = 0$ has equal roots:
 - (i) show that $5k^2 6k 11 = 0$; (3 marks)
 - (ii) hence find the possible values of k. (2 marks)

5(a)(i)	$x^2 + (3-7)x + 5 - 49 = 0$			Be convinced - no missing brackets etc
	$x^{2} + (3-7)x + 5 - 49 = 0$ $\Rightarrow x^{2} - 4x - 44 = 0$	B1	1	ag Must have $= 0$
(ii)	Use of quadratic equation formula or attempt to complete square	M 1		Condone one slip $\frac{4 \pm \sqrt{192}}{2}$
	$\Rightarrow (x =) 2 \pm 4\sqrt{3}$	A1	2	
(b)(i)	Discriminant $b^2 - 4ac$ $(3-k)^2 - 4(5-k^2)$	M1 A1		Used - must involve k $9-6k+k^2-20+4k^2$
	$\Rightarrow 5k^2 - 6k - 11 = 0$	A1	3	ag must use " = 0" condition
(ii)	(5k-11)(k+1) = 0	M1		Attempt to solve or factorise
	$\Rightarrow k = -1, \frac{11}{5}$	A1	2	
	Total		8	

- (a) (i) Express $x^2 + 8x + 11$ in the form $(x + p)^2 + q$. (2 marks)
 - (ii) Hence, or otherwise, find the coordinates of the minimum point of the curve with equation $y = x^2 + 8x + 11$. (2 marks)
- (b) Describe in detail the geometrical transformation which maps the graph of $y = x^2$ onto the graph of $y = x^2 + 8x + 11$. (3 marks)
- (c) Determine the condition on k for which the equation

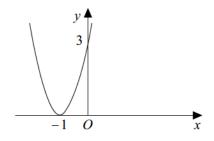
$$x^2 + 8x + 11 - k = 0$$

has no real solutions.

Question Solution Marks Total Comments Number marks and part $(x+4)^2 - 5$ **B**1 $p = 4; \quad q = -5$ 6(a)(i) 2 **B**1 Minimum (-4, -5) or x = -4, y = -5**B**1√ (ii) **B**1√ 2 ft their p and q (or correct) M1 for "shift" if one term correct or Translation (b) **M**1 A1 if one term correct, etc through A1 3 May be stated and not used (c) No real roots when $(b^2 - 4ac) < 0$ **B**1 64 - 4(11 - k)Condone sign error with *k* (or one slip) **M**1 May be part of quadratic equation formula *k* < −5 A1 3 cso Total 10

(3 marks)

The graph of $y = 3(x + 1)^2$ is sketched below.



- (a) Describe fully a sequence of geometrical transformations that would map the graph of $y = x^2$ onto the graph of $y = 3(x + 1)^2$. (4 marks)
- (b) (i) Express $3(x+1)^2$ in the form $px^2 + qx + r$. (1 mark)
 - (ii) Find the gradient of the curve with equation $y = 3(x+1)^2$ at the point where x = 4. (3 marks)
- (c) (i) Show that the curve with equation $y = 3(x+1)^2$ and the line with equation y = kx 9 intersect when

$$3x^2 + (6-k)x + 12 = 0 (1 mark)$$

(ii) Find the values of k for which the quadratic equation

$$3x^2 + (6-k)x + 12 = 0$$

has equal roots.

(iii) State the geometrical relationship between the line y = kx - 9 and the curve $y = 3(x + 1)^2$ for these values of k. (1 mark)

(4 marks)

Question	Solution	Marks	Total	Comments
8(a)	One-way stretch in y-direction	M 1		Allow method mark only for description
	Scale factor 3	A1		such as move / shift / enlarge if other
				feature such as scaling factor is correct
	Translation in x-direction	M 1		
	$\left[-1 \right]$			
	Vector $\begin{bmatrix} -1\\ 0 \end{bmatrix}$	A1	4	
(b)(i)	$3x^2 + 6x + 3$	B1	1	
	$5\lambda + 0\lambda + 5$	DI	1	
(ii)	dy	N/1		Attempt at differentiation
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x + 6$	M1		ft from (i)
		A1√		
	When $x = 4$, gradient = 30	A1√	3	
(c)(i)	$3x^2 + 6x + 3 = kx - 9$			
	$\Rightarrow 3x^2 + (6-k)x + 12 = 0$	B1	1	ag
(ii)	$(6-k)^2 = 144$	B1		Discriminant = 0
	$(6-k)^2 = 144$ $6-k = \pm 12$	M 1		Attempt to solve for <i>k</i>
	k = -6	A1		_
	<i>k</i> = 18	A1	4	
		F 1		
(iii)	Line is a tangent to the curve	E1	1	Single point of intersection etc
	Total		14	