D1 Pseudo code

Challenge 1

(a) Trace the following algorithm.


```
Line 1
           A = 1
Line 2
           LABEL X
Line 3
             B = A * A * A
Line 4
             IF B > 100 THEN GOTO Y
Line 5
             PRINT A, B
Line 6
             A = A + 1
Line 7
             GOTO X
Line 8
           LABEL Y
Line 9
           STOP
```

(3 marks)

(b) Explain how your trace table would change if lines 1 and 2 were interchanged. (2 marks)

Challenge 2

The following algorithm is to be used on different sets of numbers.

Line 10 INPUT X, Y

Line 20 LET A = Y

Line 30 LET B = 0

Line 40 LET A = A - X

Line 50 LET B = B + 1

Line 60 IF $A \ge X$ THEN GOTO Line 40

Line 70 PRINT A, B

Line 80 STOP

(a) Trace the algorithm:

(i) in the case when X = 5 and Y = 20; (2 marks)

(ii) in the case when X = 7 and Y = 29. (3 marks)

(b) State the purpose of the algorithm. (2 marks)

Challenge 3

The algorithm below is used to generate a sequence of numbers.

LINE 10 INPUT A, B

LINE 20 PRINT A, B

LINE 30 LET C = A + B

LINE 40 PRINT C

LINE 50 LET A = B

LINE 60 LET B = C

LINE 70 IF C < 10 THEN GOTO LINE 30

LINE 80 END

(a) Trace the algorithm when A = 1 and B = 1.

(4 marks)

(b) Suppose that LINE 70 is changed to

IF C < 50 THEN GOTO LINE 30.

Write down the extra values that C now takes.

(2 marks)

(c) A student mistypes LINE 60 as LET C = B.

Find the values of A, B and C that the student would get using the amended algorithm.

(4 marks)

Final Challenge

A student is using the algorithm below to find the real roots of a quadratic equation.

LINE 10	INPUT A, B, C	
LINE 20	D = B*B - 4 * A * C	
LINE 30	$X_1 = (-B + \sqrt{D})/(2*A)$	
LINE 40	$X_2 = (-B - \sqrt{D})/(2*A)$	
LINE 50	IF $X_1 = X_2$ THEN GOTO L	
LINE 60	PRINT "DIFFERENT ROOTS", X_1, X_2	
LINE 70	GOTO M	
LINE 80	LABEL L	
LINE 90	PRINT "EQUAL ROOTS", X_1	
LINE 100	LABEL M	
LINE 110	END	

(2 marks)

(a) Trace the algorithm

(i) if
$$A = 1$$
, $B = -4$, $C = 4$,

(ii) if
$$A = 2$$
, $B = 9$, $C = 9$. (2 marks)

- (b) (i) Find a set of values of A, B and C for which the algorithm would fail. (2 marks)
 - (ii) Write down additional lines to ensure that the algorithm would not fail for **any** values of A, B and C that may be input. (4 marks)