Polynomial Functions

The cubic polynomial $x^3 + ax^2 + bx + 4$, where a and b are constants, has factors x - 2 and x + 1. Use the factor theorem to find the values of a and b.

(6 marks)

,	Total	6	
Multiplying out $a = -3, b = 0$	M1 A1A1		
(x)(x-2)(x+1) $(x-2)(x-2)(x+1)$ Multiplying out	A1		
(x)(x-2)(x+1)	M1		
or s.r. maximum mark $\frac{5}{6}$:			
a = -3, b = 0	A1A1	6	
$ \begin{vmatrix} -1+a-b+4 = 0 \\ a = -3, b = 0 \end{aligned} $	M1A1		
= 0	A1		
4 $8+4a+2b+4$	M1		a.e.f.

Given that $f(x) = x^3 - 4x^2 - x + 4$,

- (a) find f(1) and f(2), (2 marks)
- (b) factorise f(x) into the product of three linear factors. (3 marks)

Q	Solution	Marks	Total	Comments			
1 (a)	0, -6	B1B1	2				
(b)	$(x-1)(x^2-3x-4)$ $(x-1)(x+1)(x-4)$	B1 M1A1	3	for $x-1$ factor allow separate factors $(x^2-1)(x-4)$ SR1			
	Total		5				

The polynomial f(x) is given by

$$f(x) = x^3 + px^2 + x + 54,$$

where p is a real number. When f(x) is divided by x + 3, the remainder is -3.

Use the Remainder Theorem to find the value of p.

(3 marks)

Q	Solution	Marks	Total	Comments
1	Substitute $x = \pm 3$	M1		
	x = -3 correctly substituted	A1		
	p = -3	A1F	3	Division earns 0 marks
	Total		3	

$$f(x) = 6x^3 + ax^2 + bx - 5$$

where a and b are constants.

When f(x) is divided by (x + 1) there is no remainder.

When f(x) is divided by (2x - 1) the remainder is -15

(a) Find the value of a and the value of b.

(5)

(b) Factorise f(x) completely.

(4)

Question Number		Scheme	Marks	
6	(a)	f(2) = 16 + 40 + 2a + b or $f(-1) = 1 - 5 - a + b$	M1 A1	
	(b)	Finds 2nd remainder and equates to 1st \Rightarrow 16+40+2a+b=1-5-a+b a = -20 $f(-3) = (-3)^4 + 5(-3)^3 - 3a + b = 0$ 81-135 + 60 + b = 0 gives b = -6	M1 A1ft A1 cso	(5) (3) [8]