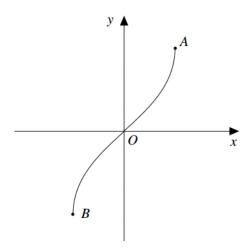
(a) The diagram shows the graph of

$$y = \sin^{-1} x.$$



Write down the coordinates of the end-points A and B.

(2 marks)

(b) Use the mid-ordinate rule, with five strips of equal width, to estimate the value of

$$\int_0^1 \sin^{-1} x \, \mathrm{d}x.$$

Give your answer to three decimal places.

(5 marks)

5	(a)			_	Alternative
		Either $A\left(1, \frac{\pi}{2}\right)$ or $A\left(1, 90^{\circ}\right)$	В1		x - coords ± 1 B1
		$B\left(-1, -\frac{\pi}{2}\right) \text{ or } B\left(-1, -90^{\circ}\right)$	B1	2	$y - \text{coords} \pm \frac{\pi}{2} \text{ or } \pm 90^{\circ}$ B1
	(b)	Use of $x = 0.1, 0.3, 0.5, 0.7, 0.9$	M1		
		y-values: 0.1002	M1		sin ⁻¹ (their x-values) radians
		0.3047	m1		$\sum y$ attempted (radians)
		0.5236			Accept AWRT these
		0.7754			
		1.1198			
		$I = 0.2 \times \text{Sum of } y\text{-values}$	M1		$0.2 \times \sum$ their y – values (even if degrees used)
		= 0.565	A 1	5	CAO
		Total		7	

$$f(x) = 2x^2 + 3 \ln(2 - x), x \in \mathbb{R}, x < 2.$$

(a) Show that the equation f(x) = 0 can be written in the form

$$x = 2 - e^{kx^2},$$

where k is a constant to be found.

(3)

The root, α , of the equation f(x) = 0 is 1.9 correct to 1 decimal place.

(b) Use the iteration formula

$$x_{n+1} = 2 - e^{kx_n^2}$$
,

with $x_0 = 1.9$ and your value of k, to find α to 3 decimal places and justify the accuracy of your answer.

(5)

6. (a)
$$2x^2 + 3 \ln (2 - x) = 0 \implies 3 \ln (2 - x) = -2x^2 \\ \ln (2 - x) = -\frac{2}{3}x^2$$
 M1

$$2 - x = e^{-\frac{2}{3}x^2} \qquad M1$$

$$x = 2 - e^{-\frac{2}{3}x^2} \qquad [k = -\frac{2}{3}] \qquad A1$$
(b) $x_1 = 1.90988, x_2 = 1.91212, x_3 = 1.91262, x_4 = 1.91273 \qquad M1 A1$

$$\therefore \alpha = 1.913 \text{ (3dp)} \qquad A1$$

$$f(1.9125) = 0.0070, \text{ f}(1.9135) = -0.020 \qquad M1$$

$$\text{sign change, f}(x) \text{ continuous } \therefore \text{ root} \qquad A1$$
(c) $f'(x) = 4x + \frac{3}{2-x} \times (-1) = 4x - \frac{3}{2-x} \qquad M1 A1$

$$\therefore 4x - \frac{3}{2-x} = 0, \qquad 4x = \frac{3}{2-x}, \qquad 4x(2-x) = 3$$

$$4x^2 - 8x + 3 = 0, \qquad (2x - 3)(2x - 1) = 0 \qquad M1$$

$$x = \frac{1}{2}, \frac{3}{2} \qquad A1 \qquad (13)$$

(a) Use Simpson's rule with 7 ordinates (6 strips) to find an approximation to $\int_{0.5}^{2} \frac{x}{1+x^3} dx$, giving your answer to three significant figures. (4 marks)

(b) Find the exact value of
$$\int_0^1 \frac{x^2}{1+x^3} dx$$
. (4 marks)

Q	Solution	Marks	Total	Comments
4(a)	x y		00	
	$0.5 \qquad \frac{4}{9} = 0.4$	BI		x values correct PI
	0.75 $\frac{48}{91} = 0.5275$	В1		At least 5 y values that would be correct
	$\frac{1}{2} = 0.5$			to 2sf or better, or exact values. May be seen within working.
	$1.25 \qquad \frac{80}{189} = 0.4233$			
	$\frac{12}{35} = 0.3429$			
	1.75 $\frac{112}{407} = 0.2752$			
	$2 \qquad \frac{2}{9} = 0.2$			
	$\left[\left(\frac{4}{9} + \frac{2}{9} \right) + 4 \left(\frac{48}{91} + \frac{80}{189} + \frac{112}{407} \right) + 2 \left(\frac{1}{2} + \frac{12}{35} \right) \right]$	MI		Clear attempt to use 'their' y values within Simpson's rule
	$\int = \frac{1}{3} \times 0.25[]$			
	=0.605	Al	4	Answer must be 0.605 with no extra sf (Note 0.605 with no evidence of Simpson's rule scores 0/4)
(b)	$\int_{0}^{1} \frac{x^{2}}{1+x^{3}} dx$ $= \frac{1}{3} \ln (1+x^{3})$			
	$=\frac{1}{2}\ln(1+x^3)$	M1		$k \ln(1+x^3)$ condone missing brackets
		A1		Correct. A1 may be recovered for missing brackets if implied later
	$=\frac{1}{3}\ln(1+1)\left(-\frac{1}{3}\ln 1\right)$	ml		F(1) (- F(0))
	$=\frac{1}{3}\ln 2$	A1	4	In 1 must not be left in final answer
	Alternative $u = 1 + x^3$ $du = 3x^2 dx$			
	$\int = \int \frac{du}{3u}$	(M1)		$\frac{du}{dx}$ correct and integral of form $k \int \frac{du}{u}$
	$=\frac{1}{3}[\ln u]$	(A1)		
	$=\frac{1}{3}\ln 2\left(-\frac{1}{3}\ln 1\right)$	(m1)		Correct substitution of correct u limits or conversion back to x and $F(1)$ (– $F(0)$)
	$=\frac{1}{3}\ln 2$			

- For $0 < x \le 2$, the curves with equations $y = 4 \ln x$ and $y = \sqrt{x}$ intersect at a single point where $x = \alpha$.
 - (a) Show that α lies between 0.5 and 1.5. (2 marks)
 - (b) Show that the equation $4 \ln x = \sqrt{x}$ can be rearranged into the form

$$x = e^{\left(\frac{\sqrt{x}}{4}\right)} \tag{1 mark}$$

(c) Use the iterative formula

$$x_{n+1} = e^{\left(\frac{\sqrt{x_n}}{4}\right)}$$

with $x_1 = 0.5$ to find the values of x_2 and x_3 , giving your answers to three decimal places. (2 marks)

(d) Figure 1, on the opposite page, shows a sketch of parts of the graphs of $y = e^{\left(\frac{\sqrt{x}}{4}\right)}$ and y = x, and the position of x_1 .

On **Figure 1**, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of x_2 and x_3 on the x-axis. (2 marks)

Q	Solution	Marks	Total	Comments
2(a)	$f(x) = 4 \ln x - \sqrt{x}$			Or reverse
	f(0.5) = -3.5 $f(1.5) = 0.4$ must have both values correct	M1		Allow $f(0.5) < 0$ and $f(1.5) > 0$ only if $f(x)$ defined
	Change of sign $\therefore 0.5 < \alpha < 1.5$	Al	2	f(x) must be defined and all working correct, including both statement and interval (either may be written in words or symbols) OR comparing 2 sides: $4\ln 0.5 = -2.8 \sqrt{0.5} = 0.7$ $4\ln 1.5 = 1.6 \sqrt{1.5} = 1.2$ At 0.5, LHS < RHS; at 1.5, LHS > RHS
(b)	$\ln x = \frac{\sqrt{x}}{4} \qquad \text{or } x^4 = e^{\sqrt{x}}$			$\therefore 0.5 < \alpha < 1.5 \text{ (A1)}$ Must be seen
	$\ln x = \frac{\sqrt{x}}{4} \qquad \text{or } x^4 = e^{\sqrt{x}}$ $x = e^{\frac{\sqrt{x}}{4}}$	В1	1	AG; no errors seen
(c)	$x_2 = 1.193$ $x_3 = 1.314$	B1 B1	2	If B0B0 scored but either value seen correct to 2 or 4 dp, score SC1
(d)	x_1 x_2 x_3	M1	2	Vertical line from x_1 to curve (condone omission from x -axis to $y = x$) and then horizontal to $y = x$ 2^{nd} vertical and horizontal lines, and x_2 , x_3 (not the values) must be labelled on x -axis
	Total		7	

Q	Solution	Marks	Total	Comments
2(a)	$f(x) = 4 \ln x - \sqrt{x}$			Or reverse
	f(0.5) = -3.5 $f(1.5) = 0.4$ must have both values correct	M1		Allow $f(0.5) < 0$ and $f(1.5) > 0$ only if $f(x)$ defined
	Change of sign $\therefore 0.5 < \alpha < 1.5$	Al	2	f(x) must be defined and all working correct, including both statement and interval (either may be written in words or symbols) OR comparing 2 sides: $4\ln 0.5 = -2.8 \sqrt{0.5} = 0.7$ $4\ln 1.5 = 1.6 \sqrt{1.5} = 1.2$ At 0.5, LHS < RHS; at 1.5, LHS > RHS
(b)	$\ln x = \frac{\sqrt{x}}{4} \qquad \text{or } x^4 = e^{\sqrt{x}}$			$\therefore 0.5 < \alpha < 1.5 \text{ (A1)}$ Must be seen
	$\ln x = \frac{\sqrt{x}}{4} \qquad \text{or } x^4 = e^{\sqrt{x}}$ $x = e^{\frac{\sqrt{x}}{4}}$	В1	1	AG; no errors seen
(c)	$x_2 = 1.193$ $x_3 = 1.314$	B1 B1	2	If B0B0 scored but either value seen correct to 2 or 4 dp, score SC1
(d)	x_1 x_2 x_3	M1	2	Vertical line from x_1 to curve (condone omission from x -axis to $y = x$) and then horizontal to $y = x$ 2^{nd} vertical and horizontal lines, and x_2 , x_3 (not the values) must be labelled on x -axis
	Total		7	

Figure 1

