- 2 (a) Use logarithms to solve the equation $2^x = 7$, giving your answer to three significant figures. (2 marks)
 - (b) The equation

$$2^x = 7 - x$$

has a single root, α .

(i) Show that α lies between 2.0 and 2.4.

(1 mark)

(ii) Use the bisection method to find an interval of width 0.1 in which α lies.

(3 marks)

2(a)	$x \ln 2 = \ln 7$	M1		May use log ₁₀
	$\Rightarrow x = 2.81$	A 1	2	2.80735 Accept more than 3 SF
(b) (i)	$f(x) = 2^x - 7 + x ;$			
	f(2.0) = -1; $f(2.4) = 0.678$			
	⇒ root lies in interval (2.0, 2.4)	B1	1	Or equivalent considering both sides but must contain a valid conclusion
(ii)	Considering $f(2.2)$ first $f(2.2) = -0.2052$	M1		M0 if bisection method NOT used
	\Rightarrow root lies in interval (2.2, 2.4) f(2.3) = 0.224	A1		
	\Rightarrow root lies in interval (2.2, 2.3)	A 1	3	SC1 if correct interval given but bisection method not used
	Total		6	

A curve satisfies the differential equation $\frac{dy}{dx} = \sqrt{9 - x^2}$.

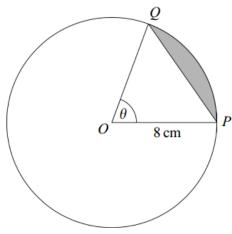
Starting at the point (0, 3) on the curve, use a step-by-step method with a step length of 0.5 to estimate the value of y at x = 1, giving your answer to two decimal places. (5 marks)

Question	Solution	Marks	Total	Comments
6	$x = 0 \Rightarrow y' = 3$	M1		
	$x = 0 \Rightarrow y' = 3$ $\delta y \approx 3\delta x = 1.5$	m1		
	$x = 0.5 \Rightarrow y \approx 3 + 1.5 = 4.5$	A1		
	and $y' \approx \sqrt{8.75} \approx 2.958$	m1		
	$x = 1 \Rightarrow y \approx 4.5 + (2.958)(0.5)$ ≈ 5.98	A1F	5	ft error in y(0.5)
	Total		5	

- 7 (a) Sketch, on the same diagram, the graphs of $y = \ln x$ and $y = \frac{3}{x}$ for x > 0. (2 marks)
 - (b) (i) Show that the equation $\ln x \frac{3}{x} = 0$ has a root between x = 2 and x = 3. (2 marks)
 - (ii) With a starting value of 2.5, use the Newton-Raphson method once to find a second approximation to this root. (4 marks)

7 (a)	Graph mx	B1		
	Graph $\frac{3}{x}$	B1	2	
(b)(i)	$ \begin{cases} f(3) > 0 \\ f(2) < 0 \end{cases} \Rightarrow \text{root in } 2 < x < 3 $	M1A1	2	
(ii)	$f'(x) = \frac{1}{x} + \frac{3}{x^2}$	B1		
	Use of Newton-Raphson formula	M1A1√		
	$x_1 = 2.82$	A1	4	AWRT (3 s.f) is OK
	Total		8	

3 The diagram shows a circle with centre O and radius 8 cm. The angle between the radii OP and OQ is θ radians.



- (a) (i) Find the area of the sector OPQ in terms of θ . (2 marks)
 - (ii) Find the area of the triangle OPQ in terms of $\sin \theta$. (2 marks)
 - (iii) Hence write down the area of the shaded segment. (1 mark)
- (b) When the area of the shaded segment is exactly one sixteenth of the area of the whole circle, θ satisfies the equation

$$8\theta - 8\sin\theta - \pi = 0.$$

- (i) Show that this equation has a root between 1.3 and 1.4. (3 marks)
- (ii) Use linear interpolation once to show that an estimate for this root is 1.37.

 (3 marks)

Q	Solution	Marks	Total	Comments
3(a)(i)	Sector area formula	M1		Allow even if formula not used
	Sector area = 32θ cm ²	A1	2	Condone omission of units throughout
(ii)	Appropriate use of $\sin \theta$	M1		
	Triangle area = $32\sin\theta$ cm ²	A1	2	
(iii)	Segment area = $(32\theta - 32\sin\theta)$ cm ²	A1F	1	ft c's answers, dependent on both M marks
(b)(i)	$f(1.3) \approx -0.450, f(1.4) \approx 0.175$	B1B1		1 st B1: AWRT - 0.4 or - 0.5; 2 nd B1: AWRT 0.2
	Sign change, so root between	E1	3	Sign change must be mentioned
(ii)	$f(1.4)-f(1.3)\approx 0.625$	B1		PI
	Considering $\frac{0.450}{0.625} (\approx 0.720)$	M1		OE
	1.37(2) convincingly found	A1	3	AG (1.37)
	Total		11	