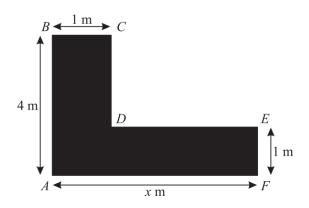
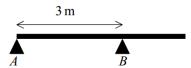
1 A uniform metal bar, of mass 30 kg and length 3 m, rests in a horizontal position, on two supports at A and B, as shown in the diagram below.



Find the magnitude of each of the reaction forces acting on the bar at the supports at A and B.

(4 marks)

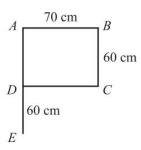
Question	Solution	Marks	Total Marks	Comments
1	$1.5 \times R_B = 1 \times 30 \times 9.8$ $R_B = 196 \text{ N}$	M1 A1		M1: moment equation
	$R_A + 196 = 30 \times 9.8$ $R_A = 98 \text{ N}$	M1 A1	(4)	M1: 2nd moment equation or vertical forces in equilibrium
		TOTAL	4	


6 The diagram shows a uniform lamina.

- (a) For a particular lamina, x = 7.
 - (i) Find the distance of the centre of mass of the lamina from the side AB. (3 marks)
 - (ii) The lamina is suspended from the corner C. Find the angle between the side CD and the vertical. (5 marks)
- (b) Another lamina is suspended from the corner C. Given that the side CD is vertical, find x. (4 marks)

Question	Solution	Marks	Total Marks	Comments
6 (a)(i)	$10\overline{x} = 3 \times 0.5 + 7 \times 3.5$ $\overline{x} = 2.6$	M1 A1 A1	(3)	M1: 3 term equation
(ii)	$10\overline{y} = 3 \times 2.5 + 7 \times 0.5$ $\overline{y} = 1.1$	M1 A1		M1: 3 term equation
	$\tan \theta = \frac{2.6 - 1}{4 - 1.1}$ = 28.9°	M1 A1 A1	(5)	M1: calculating values for finding the angle
(b)	$(x+3) \times 1 = 3 \times 0.5 + x \times \frac{x}{2}$ $x^2 - 2x - 3 = 0$ x = 3 or x = -1	M1 A1		M1: equation using $\bar{x} = 1$
	x = 3 or x = -1 $x = 3$	M1 A1	(4)	M1: solving quadratic for <i>x</i>
		TOTAL	12	

4 A uniform metal beam has length 5 metres and mass $250 \,\mathrm{kg}$. It rests horizontally on two supports, A and B, which are 3 metres apart. Support A is at one end of the beam, as shown in the diagram.



- (a) Find the magnitudes of the forces exerted on the beam by the supports.
- (b) A man, of mass 80 kg, walks along the beam from A towards the other end of the beam. Find the distance he can walk past B, before the beam starts to tip. (3 marks)

(4 marks)

Question	Solution	Marks	Total	Comments
4(a)	$3 \times R_B = 2.5 \times 250g$	M1		Uses moments about one support to get 2 term equation
	$R_B = 2040 \text{ N}$	A 1		Correct reaction force
	$R_B = 2040 \text{ N}$ $R_A + 2040 = 250g$	m1		Uses moments or vertical equilibrium
	$R_{A} = 408 \mathrm{N}$	A 1	4	Correct force
(b)	$80 \times 9.8x = 250 \times 9.8 \times 0.5$	M1A1		Two term moments equation with x
	$x = \frac{125}{80} = 1.56 \mathrm{m}$	A1	3	Correct distance
	Total		7	

8 A letter P is formed by bending a uniform steel rod into the shape shown below, in which *ABCD* is a rectangle.

(a) Find the distance of the centre of mass of the letter from the side

The letter is to be suspended from a point F on the side AB. The point F is a distance x cm from A.

- (b) State the value of x if the side AB is to be horizontal. (1 mark)
- (c) Find the value of x if the side AB is to be at an angle of 5° to the horizontal, with A higher than B.

8 (a)(i)	$320x = 70 \times 35 + 70 \times 35 + 60 \times 70$ $x = \frac{455}{16} = 28.4375 = 28.4 \text{ to } 3 \text{ sf}$	M1 A1	(3)	M1: for a four-term moment equation
(ii) (b)	$320y = 120 \times 60 + 70 \times 60 + 60 \times 30$ $y = \frac{165}{4} = 41.25 = 41.3 \text{ to } 3 \text{ sf}$ $x = 28.4 \text{ cm}$	M1 A1 A1 B1 ✓	(3)	M1: for a four term moment equation
(c)	$\tan 5^{\circ} = \frac{28.4375 - x}{41.3}$ $x = 24.8 \text{ cm to } 3 \text{ sf}$	M1 A1	(3)	
		TOTAL	(10)	