C3 Logs and exponentials

Challenge 1

The point P lies on the curve with equation $y=\ln \left(\frac{1}{3} x\right)$. The x -coordinate of P is 3 .
Find an equation of the normal to the curve at the point P in the form $y=a x+b$, where a and b are constants.
(Total 5 marks)

Challenge 2

(a) Sketch on one pair of axes the graphs of

$$
y=6-x \text { and } y=\ln x
$$

(b) Hence state the number of roots of the equation

$$
6-x=\ln x .
$$

(c) By considering values of the function f, where

$$
f(x)=6-x-\ln x
$$

(i) show that the equation in part (b) has a root α such that

$$
4<\alpha<5,
$$

(ii) determine whether α is closer to 4 or to 5 .

Challenge 3

(a) (i) Draw on the same diagram sketches of the graphs with equations

$$
y=5 \mathrm{e}^{2 x} \text { and } y=\frac{4}{x} \text { for } x>0
$$

(ii) Explain why this diagram shows that, for $x>0$, the equation

$$
5 \mathrm{e}^{2 x}-\frac{4}{x}=0
$$

has just one root, α, and show that $0.3<\alpha<0.4$.
(b) Show, using calculus, that $y=5 \mathrm{e}^{2 x}-\frac{4}{x}$ is an increasing function of x for $x>0$.
(c) Show that the area of the region enclosed by the curve $y=5 \mathrm{e}^{2 x}-\frac{4}{x}$, the x-axis, and the lines $x=\frac{1}{2}$ and $x=2$ can be expressed in the form

$$
\frac{5}{2}\left(\mathrm{e}^{4}-\mathrm{e}\right)-k \ln 2
$$

for some positive integer k whose value is to be determined.

Final Challenge

(a) (i) Draw on the same diagram sketches of the graphs with equations

$$
\begin{equation*}
y=x-2 \text { and } y=2 \ln x \text { for } x>0 \tag{2marks}
\end{equation*}
$$

(ii) Hence state the number of roots of the equation

$$
x-2=2 \ln x, \quad x>0
$$

(b) The curve, C, with equation

$$
y=x-2-2 \ln x, \quad x>0
$$

has only one stationary point.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Show that the y-coordinate of the stationary point is $-\ln 4$.
(iii) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$.
(iv) Hence show that the stationary point is a minimum.
(c) The vertical lines $x=6$ and $x=7$ meet the curve C at points P and Q respectively.
(i) Show that the y-coordinate of P is $4-\ln 36$.
(2 marks)
(ii) The area of the trapezium bounded by the lines $P Q, x=6, x=7$ and the x-axis is A square units. Show that

$$
A=\frac{p}{2}-\ln q
$$

stating the values of the positive integers p and q.

