The point P lies on the curve with equation $y = \ln\left(\frac{1}{3}x\right)$. The x-coordinate of P is 3.

Find an equation of the normal to the curve at the point P in the form y = ax + b, where a and b are constants.

(Total 5 marks)

$$\frac{dy}{dx} = \frac{1}{x}$$
M1 A1

At $x = 3$, gradient of normal $= \frac{-1}{\frac{1}{3}} = -3$
M1

$$y - \ln 1 = -3(x - 3)$$
M1

$$y = -3x + 9$$
A1 5

(a) Sketch on one pair of axes the graphs of

$$y = 6 - x \text{ and } y = \ln x. \tag{1 mark}$$

(b) Hence state the number of roots of the equation

$$6 - x = \ln x . (1 mark)$$

(c) By considering values of the function f, where

$$f(x) = 6 - x - \ln x ,$$

(i) show that the equation in part (b) has a root α such that

$$4 < \alpha < 5$$
, (2 marks)

(ii) determine whether α is closer to 4 or to 5. (2 marks)

2 (a)	Sketch	B1	1	condone no scales for x and/or y
(b)	One root	B1	1	
(c)(i)	$f(4) \approx -0.61, \ f(5) \approx -0.61$ Change of sign $\Rightarrow 4 < \alpha < 5$	B1 E1	2	numerical evidence needed; allow clear comparison of values of $6 - x$ and $\ln x$ AG; change of sign may not be mentioned but conclusion must be drawn
(ii)	$f(4.5) \approx -0.004$ Negative value $\Rightarrow \alpha$ nearer to 4	B1 E1F	2	evidence needed; allow comparison f.t positive value for f(4.5)
	Total		6	

(i) Draw on the same diagram sketches of the graphs with equations (a)

$$y = 5e^{2x}$$
 and $y = \frac{4}{x}$ for $x > 0$. (2 marks)

(ii) Explain why this diagram shows that, for x > 0, the equation

$$5e^{2x} - \frac{4}{x} = 0$$

has just one root, α , and show that $0.3 < \alpha < 0.4$.

(2 marks)

- (b) Show, using calculus, that $y = 5e^{2x} \frac{4}{x}$ is an increasing function of x for x > 0. (3 marks)
- Show that the area of the region enclosed by the curve $y = 5e^{2x} \frac{4}{x}$, the x-axis, and the lines $x = \frac{1}{2}$ and x = 2 can be expressed in the form

$$\frac{5}{2}(e^4 - e) - k \ln 2$$

for some positive integer k whose value is to be determined.

(5 marks)

7 (a) (i) Sketches of
$$y = 5 e^{2x}$$
 and $y = \frac{4}{x}$ for $x \ge (>) 0$ B1 B1 Igr

- **B1 B1** Ignore x < 0
- (ii) Only one point of intersection noted or stated $f(0.3) \approx -4.22 < 0$ and $f(0.4) \approx 1.13 > 0$
- E1 No explanation required

(b)
$$y' = 10 e^{2x} + \frac{4}{x^2}$$

B1 B1 One for each term correct

y' > 0 stated or explained (for all x > 0)

FT $A e^{kx} + \frac{B}{2} (A, B > 0)$ B1

(c)
$$\int \left(5e^{2x} - \frac{4}{x}\right) dx \text{ attempted}$$
$$= \frac{5}{2} e^{2x} - 4 \ln x$$

M1

 $= 2.5(e^4 - e) - 4(\ln 2 - \ln \frac{1}{2})$

Al Al

Both limits substd. in FT M1 expression with 2 variable terms

 $= 2.5(e^4 - e) - 8 \ln 2$ i.e k = 8

A1 CAO

(a) (i) Draw on the same diagram sketches of the graphs with equations

$$y = x - 2$$
 and $y = 2 \ln x$ for $x > 0$ (2 marks)

(ii) Hence state the number of roots of the equation

$$x - 2 = 2 \ln x, \qquad x > 0 \tag{1 mark}$$

(b) The curve, C, with equation

$$y = x - 2 - 2 \ln x, \qquad x > 0$$

has only one stationary point.

- (i) Find $\frac{dy}{dx}$. (2 marks)
- (ii) Show that the y-coordinate of the stationary point is $-\ln 4$. (3 marks)
- (iii) Find $\frac{d^2y}{dx^2}$. (2 marks)
- (iv) Hence show that the stationary point is a minimum. (1 mark)
- (c) The vertical lines x=6 and x=7 meet the curve C at points P and Q respectively.
 - (i) Show that the y-coordinate of P is $4 \ln 36$. (2 marks)
 - (ii) The area of the trapezium bounded by the lines PQ, x=6, x=7 and the x-axis is A square units. Show that

$$A = \frac{p}{2} - \ln q$$

stating the values of the positive integers p and q.

(3 marks)

Question	Solution	Marks	Total	Comments
7 a)(i)	<i>y</i> †			
	1/2 ×			
	1 17			
	/	B2,1	2	B2 graphs correct with details
	- 11	0.51.005.0		(B1 for correct shape of $y = 2 \ln x$)
(ii)	2 roots	B1	1	cao (dependent on at least B1 in (i) and no
				obvious wrong reasoning)
(b)(i)	$y'(x) = 1 - \frac{2}{x}$	M1	202.01	Clear attempt to differentiate
(0)(1)	$y(x)=1-\frac{1}{x}$	A1	2	V5021
(ii)	At stationary point $y'(x) = 0 \Rightarrow 1 - \frac{2}{x} = 0$	MI		Attempts to solve $y'(x) = 0$
	$\Rightarrow x = 2$			Title in pis to solve y (x)=0
	When $x = 2$, $y = -2 \ln 2$	A1		
	$y = -\ln 2^2 = -\ln 4$	A1	3	ag
(iii)	$\frac{d^2y}{dx^2} = \frac{2}{x^2}$	M1	-54	
C. A	the A	A1	2	Clear attempt to differentiate $y'(x)$
(iv)	When $x = 2$, $y''(x) > 0 \Rightarrow$ stationary point is minimum	B1ft	1	ag
	y (x/y o -) stationary point is imminum	8,000000000		
(c)(i)	$y(6) = 4 - 2 \ln 6$	M1	-50	Attempts to find y when $x = 6$
	$= 4 - \ln 6^2 = 4 - \ln 36$	A1	2	ag
(ii)	$A = \frac{1}{2} [y(6) + y(7)] \times 1$	MI		
	4			
	$= \frac{1}{2} \left[4 - \ln 36 + 5 - \ln 49 \right]$			
	$=\frac{1}{2}[9-\ln(36\times49)]$ or			
	2			
	$=\frac{1}{2}[9]-\ln 6-\ln 7$	m1		Valid use of a law of logs
	_	SERRIBA COMO	64	attaneous and definition and an extension
	$=\frac{9}{2}-\ln 42$ ie $p=9$; $q=42$	A1	3	
	Total		16	