
7 A mathematical model is required to estimate the number, N, of a certain strain of bacteria in a test tube at time t hours after a certain instant.

After values of  $\log_{10} N$  are plotted against t, a straight line graph can be drawn through the points as shown below.



- (a) Use the graph to estimate the number of bacteria when t = 5. (3 marks)
- (b) The graph would suggest that N and t are related by an equation of the form

$$N = a \times b^t$$

where a and b are constants.

- (i) Express  $\log_{10} N$  in terms of  $\log_{10} a$ ,  $\log_{10} b$  and t. (2 marks)
- (ii) Use the graph to determine the values of a and b, giving your answers to 3 significant figures. (4 marks)
- (c) Suggest why the model  $N = a \times b^t$  is likely to give an overestimate of the number of bacteria in the test tube for large values of t. (1 mark)

| <b>7</b> (a) | $ 2.52 \\ N = 10^{2.52} $                        | B1<br>M1   |    | Seen ( even if log of this value taken)                                     |
|--------------|--------------------------------------------------|------------|----|-----------------------------------------------------------------------------|
|              | = 331                                            | <b>A</b> 1 | 3  | Accept 300 or 330 following correct logs                                    |
| (b)(i)       | $\log_{10} N = \log_{10} a + t \log_{10} b$      | B2         | 2  | B1 if $\ln$ used or $\log_{10} b'$ not simplified                           |
| (ii)         | $\log_{10} a$ is intercept on $\log_{10} N$ axis | <b>M</b> 1 |    | $\log_{10} a = 2.4$                                                         |
|              | a = 251                                          | <b>A</b> 1 |    | Must be 3sf or better                                                       |
|              | Gradient is $\log_{10} b = \frac{0.12}{5}$ etc   | M1         |    |                                                                             |
|              | b = 1.06                                         | <b>A</b> 1 | 4  | Must be 3sf or better                                                       |
|              |                                                  |            |    | May score M1 for setting up 2 equations M1 for solving one or two equations |
|              |                                                  |            |    | A2, 1 for correct answers                                                   |
| (c)          | Growth limited by test tube; some die etc        | E1         | 1  |                                                                             |
|              | Total                                            |            | 10 |                                                                             |

## 5 [A sheet of graph paper is provided for use in this question.]

The variables T and L satisfy a relationship of the form  $T = aL^b$ , where a and b are constants.

Measurements of T for given values of L gave the following results.

| L | 2    | 3    | 4    | 5    | 6    |
|---|------|------|------|------|------|
| T | 5.62 | 6.94 | 8.03 | 8.98 | 9.97 |

(a) Express  $\ln T$  in terms of a, b and  $\ln L$ .

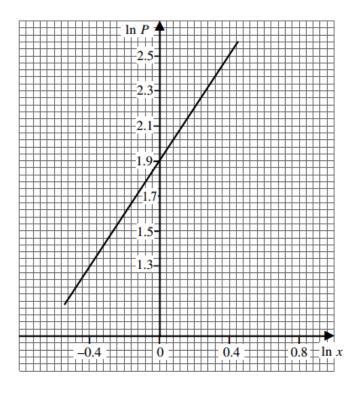
(1 mark)

(b) Plot  $\ln T$  against  $\ln L$  on graph paper.

(3 marks)

(1 mark)

- (c) Draw a suitable straight line to illustrate the relationship between the data.
- (d) Use your line to estimate
  - (i) the value of L when T = 8.50 giving your answer to two significant figures,


(2 marks)

(ii) the values of a and b, giving your answers to two significant figures. (4 marks)

| 5 (a)  | $\ln T = \ln a + b \ln L$                      | B1           | (1)  |                                           |
|--------|------------------------------------------------|--------------|------|-------------------------------------------|
| (b)    | ln L 0.693 1.099 1.386                         |              |      | 1 1.792                                   |
|        | ln T 1.726 1.937 2.083                         | B1           |      | . 6<br>0<br>9<br>2 2.300<br>. 1<br>9<br>5 |
|        | Plotting points                                | M1           |      | 5                                         |
|        | roughly correct                                | A1           | (3)  |                                           |
| (c)    | Straight line of reasonable fit                | B1           | (1)  |                                           |
| (d)(i) | $T = 8.50 \implies \ln T = 2.14$               |              |      |                                           |
|        | From graph $\ln L = 1.5$                       | M1           |      | must be $\ln L$                           |
|        | $\Rightarrow L \approx 4.5$                    | <b>A</b> 1 ✓ | (2)  |                                           |
| (ii)   | $\ln a = \text{intercept}$                     | M1           |      | proper scale                              |
|        | From graph $a \approx 3.9 \leftrightarrow 4.1$ | A1           |      |                                           |
|        | gradient = $b$                                 | M1           |      |                                           |
|        | ≈ 0.50 ↔ 0.52                                  | <b>A</b> 1   | (4)  |                                           |
|        |                                                | TOTAL        | (11) |                                           |

5 A mathematical model is used by an astronomer to investigate features of the moons of a particular planet. The mean distance of a moon from the planet, measured in millions of kilometres, is denoted by x, and the corresponding period of its orbit is P days.

The model assumes that the graph of  $\ln P$  against  $\ln x$  is the straight line drawn below.



- (a) Use the graph to estimate the period of the orbit of a moon for which x = 1.43. (3 marks)
- (b) The graph would suggest that P and x are related by an equation of the form

$$P = kx^{\alpha}$$

where k and  $\alpha$  are constants.

(i) Express  $\ln P$  in terms of  $\ln k$ ,  $\ln x$  and  $\alpha$ .

(1 mark)

(ii) Use the graph to determine the values of k and  $\alpha$ , giving your answers to 2 significant figures. (4 marks)

| Q      | Solution                              | Marks      | Total | Comments                                 |
|--------|---------------------------------------|------------|-------|------------------------------------------|
| 5(a)   | ln 1.43 = 0.358                       | M1         |       |                                          |
|        | From graph $\ln P = 2.4$              | m1         |       | Expected in range 2.43 to 2.45           |
|        | Hence $P = 11.4/5/6$                  | <b>A</b> 1 | 3     | Follow through their values within range |
| (b)(i) | $ \ln P = \ln k + \alpha \ln x $      | B1         | 1     |                                          |
| (ii)   | $\ln k$ is intercept on vertical axis | M1         |       | ln k = 1.9 (or use of formula)           |
|        | k = 6.7 ( to 2 SF)                    | A1         |       |                                          |
|        | Gradient of graph gives $\alpha$      | M1         |       | M0 if further wrong calculation using    |
|        | $\alpha = 1.5$ ( to 2 SF)             | A1         | 4     | exponentials                             |
|        | Total                                 |            | 8     |                                          |

6 [A sheet of graph paper is supplied for use in this question.]

The energy, E, lost in a cycle of magnetization of a transformer core is thought to relate to the flux density, B, by a law of the form  $E = kB^{\alpha}$  where k and  $\alpha$  are constants.

(a) Express  $\ln E$  in terms of  $\ln k$ ,  $\alpha$  and  $\ln B$ .

(1 mark)

For a given material, the values of B and E in appropriate units are:

| В | 3.16 | 9.56 | 18.3 | 29.0 | 41.4 |
|---|------|------|------|------|------|
| E | 1    | 2    | 3    | 4    | 5    |

(b) Plot  $\ln E$  against  $\ln B$  on graph paper.

(3 marks)

(1 mark)

- (c) Draw a suitable straight line to illustrate the relationship between the data.
- (d) Use your line to estimate:
  - (i) the value of E when B = 25.5 giving your answer to 2 significant figures;

(3 marks)

(ii) the values of k and  $\alpha$ , giving your answers to 2 significant figures. (4 marks)

| Question<br>Number<br>and part | Solution                                                                                        | Marks        | Total<br>Marks | Comments               |
|--------------------------------|-------------------------------------------------------------------------------------------------|--------------|----------------|------------------------|
| 6(a)                           | $\ln E = \ln K + \alpha \ln B$                                                                  | B1           | 1              |                        |
| (b)                            | ln B 1.151 2.258 2.907                                                                          |              |                | 3.367 3.723            |
|                                | ln E 0 0.693 1.099                                                                              | B2<br>(-1ee) |                | 1.386 1.609            |
|                                | plotting points – roughly correct                                                               | M1           | 3              |                        |
| (c)                            | straight line of reasonable fit                                                                 | B1           | 1              |                        |
| (d)(i)                         | $B = 25.5 \qquad \Rightarrow \ln B = 3.2387$                                                    | M1           |                |                        |
|                                | From graph $\ln E \approx 1.31$                                                                 | M1           |                |                        |
|                                | $\Rightarrow E = 3.7$                                                                           | <b>A</b> 1   | 3              | Condone 3.6 to 3.8     |
| (ii)                           | gradient = $\alpha = \frac{\Delta \ln E}{\Delta \ln B}$<br>= $\frac{1.792}{2.865} \approx 0.63$ | M1<br>A1     |                | Condone 0.62 to 0.64   |
|                                | Intercept used/or 2 points                                                                      | <b>M</b> 1   |                | full attempt to find k |
|                                | $k \approx 0.48 / 0.49$                                                                         | A1           | 4              |                        |
|                                | Total                                                                                           |              | 12             |                        |