Linear Graphs

The points A and B have coordinates (13, 5) and (9, 2) respectively.

(a) (i) Find the gradient of AB.

(ii) Find an equation for the line AB. (1 mark)

(1 mark)

- (b) The point C has coordinates (2, 3) and the point X lies on AB so that XC is perpendicular to AB.
 - (i) Show that the equation of the line XC can be written in the form 4x + 3y = 17.
 - (ii) Calculate the coordinates of X. (3 marks)

4(a)(i)	Gradient $AB = \frac{3}{4}$	B1	1	
	T	B1	1	$y = \frac{3}{4}x - \frac{19}{4}$ oe
(b)(i)	$y-2 = \frac{3}{4}(x-9)$ Gradient $XC = \frac{-1}{\text{grad } AB}$	M1	1	$ \begin{array}{ccc} 4 & 4 \\ \text{Or awareness that} & m_1 m_2 = -1 \end{array} $
	grad AB			. 2
	$=$ $\frac{1}{3}$	A1√		
	$y - 3 = -\frac{4}{3}(x - 2)$	M 1		ft their gradient
	$3y - 9 = -4x + 8 \Rightarrow 4x + 3y = 17$	A 1	4	ag
(ii)	Solving 'their' AB with $4x + 3y = 17$	M1		Realising the need to use these equations
	$x = \dots$ or $y = \dots$	m1		Elimination/substitution to solve for x/y
	x=5, y=-1	A1	3	(5,-1) are coordinates
	Total		9	

The points P, Q and R have coordinates (3,1), (1,9) and (7,2) respectively.

- (a) Find an equation for the straight line QR in the form ax + by = c, where a, b and c are integers. (3 marks)
- (b) Prove that the triangle PQR is right-angled and find its area. (4 marks)
- (c) Determine an equation for the straight line which passes through P and which is perpendicular to QR. (2 marks)

4 (a)	$y-9=-\frac{7}{6}(x-1)$ etc	M1 A1		good attempt at any form of line equation
	7x + 6y = 61	A 1 √	(3)	
(b)	$grad PQ = -4 ; grad PR = \frac{1}{4}$	M1		Attempt at both gradients (or Pythagoras etc)
	product of grads = $-4 \times \frac{1}{4} = -1$	A1		3 sides for Pythagoras $PQ^2 = 68$; $PR^2 = 17$;
				$QR^2 = 85$
	Area = $\frac{1}{2}PQ \times PR$ and attempt to			
	calculate <i>PQ</i> , <i>PR</i>	M 1		
	$= \frac{1}{2} \left[\sqrt{68} \times \sqrt{17} \right] = \underline{17}$	A1	(4)	
(c)	grad $QR = -\frac{7}{6} \implies \text{grad of perp} = \frac{6}{7}$	M1		
	Equation of line is			
	$(y-1) = \frac{6}{7}(x-3)$	A 1 ✓	(2)	
		TOTAL	9	

The points A, B and C have coordinates (1,7), (5,5) and (7,9) respectively.

(a) Show that AB and BC are perpendicular.

(3 marks)

(b) Find an equation of the line BC.

(2 marks)

- (c) The equation of the line AC is 3y = x + 20 and M is the midpoint of AB.
 - (i) Find an equation of the line through M parallel to AC.

(3 marks)

(ii) This line intersects BC at the point T. Find the coordinates of T. (3 marks)

2	Gradient $BC = \frac{9-5}{7-5}$; {=2}			
	Gradient $AB = \frac{5-7}{5-1}$; $\{=-0.5\}$	M1 A1		Attempt at both gradients Both correct
	$\{2 \times -0.5 = -1\} \Rightarrow AB \text{ and } BC \text{ perp.}$	A1 cso	(3)	AG Completed convincingly
(b)	Eqn. of line BC y-5=2(x-5) OE	M1 A1 ft	(2)	Accept any valid form
(c)	Coords. $M(3,6)$ Line parallel to AC : $3y = x + C$. passes thro' $(3,6)$ so $3y = x + 15$ (B)	B1 M1 A1 ft	(3)	$c \neq 20$ only ft if one coordinate of M
				is correct Accept any valid form
	Eqn. of line BC : $y = 2x - 5$ (A) Solve c's (A) and c's (B) simultaneously	M1		As far as a value for x or y
	$5y = 35 \Rightarrow y = 7$. OR $5x = 30 \Rightarrow x = 6$	A1		
	$\Rightarrow T(6,7)$	A1	(3)	[Award 3 marks if correct answer with no working]
		TOTAL	(11)	

The line AB has equation 3x - 4y = 4, and the line BC has equation 4x + 3y = 22.

- (a) (i) Find the gradient of AB. (2 marks)
 - (ii) Prove that the lines AB and BC are perpendicular. (2 marks)
- (b) Find the coordinates of the point B. (3 marks)
- (c) The point A has coordinates (4p, 3p 1), where p is a constant, and the point C has coordinates (1, 6).

(i) Show that
$$AC^2 = 25p^2 - 50p + 50$$
. (2 marks)

(ii) Given that AC has length $\sqrt{125}$, find the possible values of p. (3 marks)

3(a)(i)	Attempt to rearrange to $y =$	M1		$y = \frac{3}{4}x - 1$
	$\Rightarrow \text{gradient } AB = \frac{3}{4}$	A1	2	Condone correct answer for gradient even if equation is incorrect.
(ii)	gradient $BC = -\frac{4}{3}$			
	Attempt at $m_{AB} \times m_{BC} = \frac{3}{4} \times -\frac{4}{3}$	M1		
	$= -1 \implies AB$ and BC are perpendicular	A 1	2	Or awareness that $m_1 \times m_2 = -1$
(b)	Attempt to eliminate x or y	M1		3x - 4y = 4; 4x + 3y = 22
	x = 4, $y = 2$	A1 A1	3	Coordinates are (4,2)
(c)(i)	$(4p-1)^2 + (3p-7)^2$ & multiply out attempt	M1		Or Pythagoras $AB^2 + 25$
	$AC^{2} = 25p^{2} - 50p + 50$	A 1	2	ag
	$125 = 25p^2 - 50p + 50$	M1		Equating to 125 (or condone $\sqrt{125}$)
	$0 = p^2 - 2p - 3 = (p-3)(p+1)$	m1		Solving/factorising
	$\Rightarrow p=3; p=-1$	A1	3	
	Total		12	