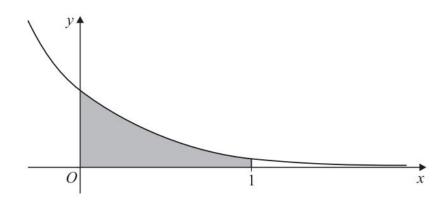
C3 Integration Challenge


Challenge 1

Use integration by parts to find

$$\int x^2 e^{-x} dx.$$
 (7)

Challenge 2

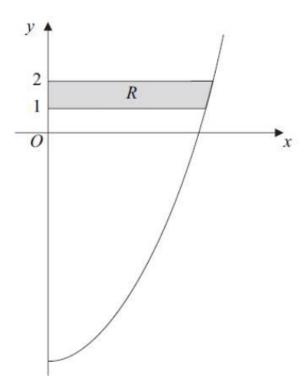
The diagram shows the graph of

$$y=\mathrm{e}^{-2x}.$$

- (a) Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$. (3 marks)
- (b) (i) Find $\int y \, dx$. (2 marks)
 - (ii) Hence show that the area of the region shaded on the diagram is

$$\frac{e^2-1}{2e^2}.$$
 (3 marks)

Challenge 3


Use the substitution $x = 2 \tan u$ to show that

$$\int_0^2 \frac{x^2}{x^2 + 4} dx = \frac{1}{2} (4 - \pi).$$
 (8)

Final Challenge

- 4 (a) Use integration by parts to find $\int x \sin x \, dx$. (4 marks)
 - (b) Using the substitution $u = x^2 + 5$, or otherwise, find $\int x \sqrt{x^2 + 5} \, dx$. (4 marks)
 - (c) The diagram shows the curve $y = x^2 9$ for $x \ge 0$.

The shaded region R is bounded by the curve, the lines y = 1 and y = 2, and the y-axis.

Find the exact value of the volume of the solid generated when the region R is rotated through 360° about the y-axis. (4 marks)

