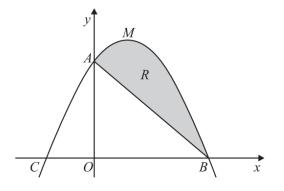
Integration



The curve with equation $y = 12 + 4x - x^2$ cuts the y-axis at A, the positive x-axis at B and the negative x-axis at C as shown in the diagram. The point O is the origin and the maximum point of the curve is M. The shaded region R is bounded by the line AB and the curve.

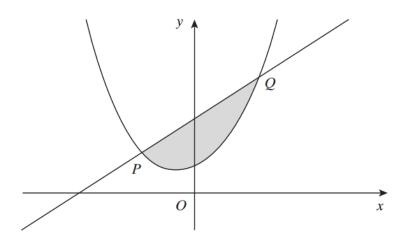
The point B has coordinates (6, 0).

- (a) Show that x = 2 at the point *M*.
- (b) Find the coordinates of C.
- Question Solution Marks Total Comments $\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - 2x$ 5 (a) **M**1 At least one of the two correct At $M, \frac{\mathrm{d}y}{\mathrm{d}x} = 0$ m1 $4 - 2x = 0 \implies x = 2$ A1 cso AG Completed convincingly (3) (b) At C, $0=12+4x-x^2 \Rightarrow 0=(6-x)(2+x)$ Factorisation or formula or use **M**1 of sym of quadratic x < 0 at $C \Rightarrow x = -2$; (C (-2,0)) (2) A1A(0,12); area $\triangle OAB = 36$ (c) **B**1 $(\text{Area } OAMB) = \int_{0}^{6} 12 + 4x - x^2 dx$ Condone **B**1 $= [12x + 2x^2 - \frac{1}{3}x^3]$ **M**1 Integration; at least two correct All three correct A1 ...= 72+72-72 = 72 A1 Area of $R=72-\Delta OAB=36=$ area ΔOAB A1 cso (6) AG Obtained convincingly TOTAL (11)
- (c) Show that triangle OAB and the region R have equal areas.

- (3 marks)
- (2 marks)

(6 marks)

The line y = 2x + 5 intersects the curve $y = x^2 + 2x + 2$ at the points P and Q, as shown in the diagram.



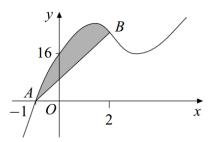
(a) Find the coordinates of P and Q, giving your answers in surd form. (4 marks)

(b)	Find the area of the shaded	region, giving your	answer in surd form.	(9 marks)
	I ma me area or me smaaea	region, gring jour	and the first out a rotting	() """"))

Q	Solution	Marks	Total	Comments
8 (a)	$x^2 + 2x + 2 = 2x + 5$	M1		
	$x = \pm \sqrt{3}, \pm \frac{\sqrt{12}}{2}, \pm 1.73$	M1A1		+1.73 M1M1A0A0
	$(\sqrt{3}, 2\sqrt{3}+5), (-\sqrt{3}, -2\sqrt{3}+5)$	A1	4	
(b)	Trapezium			
	$2\sqrt{3}\times5$	B1M1		B1 for average height = 5
	$10\sqrt{3}$ or 17.3	Al		
	Under curve			
	$\int_{-\sqrt{3}}^{\sqrt{3}} x^2 + 2x + 2 \mathrm{d}x$	B 1√		$$ on (a), allow 0, $\sqrt{3}$
	$\left\lceil \frac{1}{3}x^3 + x^2 + 2x \right\rceil$	M1A1		M1 for 2 correct
	$F(\sqrt{3}) - F(-\sqrt{3}) = 6\sqrt{3}$ or 10.4	M1A1		M1 for use of their limits following integration attempt
	Area = $4\sqrt{3}$, single term	A1	9	- ·
	Total		13	

The curve with equation $y = x^3 - 6x^2 + 9x + 16$ is sketched below.

The curve crosses the x-axis at the point A(-1, 0).



(a) (i) Find
$$\frac{dy}{dx}$$
. (3 marks)

(ii) Hence find the x-coordinates of the stationary points of the curve. (3 marks) $\int_{-1}^{2} f^{2}$

(b) (i) Find
$$\int_{-1}^{2} (x^3 - 6x^2 + 9x + 16) dx$$
. (5 marks)

(ii) The point B(2, 18) lies on the curve. Find the area of the shaded region bounded by the curve and the line AB. (3 marks)

6(a)(i)		M1		Attempt to differentiate; a power
6(a)(i)	$\frac{dy}{dt} = 3x^2 - 12x + 9$	IVI I		
	dx	A 1		decreased by 1
		Al	2	Two terms correct
		A1	3	All correct (withhold if $+c$ in answer)
(ii)	Putting candidate's $\frac{dy}{dx} = 0$	M1		$3x^2 - 12x + 9 = 0$
	3(x-1)(x-3)	m1		Attempt to solve or factorise
	x = 1, 3	A1	3	Both values and no others oe
(b)(i)	x^4 9	M 1		Attempt to integrate; increase a power by 1
	$\frac{x^4}{4} - 2x^3 + \frac{9}{2}x^2 + 16x$	A1		Two terms correct
	4 2	A1		All correct (ignore $+c$ even outside [])
	$[4-16+18+32] - [\frac{1}{4}+2+4\frac{1}{2}-16]$	ml		Attempt to evaluate limits at -1 and 2
		1111		-
	= 47.25 oe	A 1	5	Penalise if $+c$ remains $\left(\frac{189}{4}\right)$
(ii)	1			
	Area of triangle = $\frac{1}{2} \times 3 \times 18 = 27$	B1		oe
	Shaded area = (b)(i) ans – triangle	M 1		47.25 – 27
	= 20.25 oe	Al	3	
	20.20 00		5	$\frac{81}{4}$
				4
(c)	$ \begin{cases} f(-1.1) = 0.509 \text{ (or } -2.491) \\ f(-1.2) = -2.168 \text{ (or } -5.168) \end{cases} $ (both)	M 1		both
	f(-1.2) = -2.168 (or -5.168)			$f(x) = x^3 - 6x^2 + 9x + 19$ (or 16 or 13)
				1(x) - x - 6x + 9x + 19 (or 16 or 13)
	Change of sign	A1	2	May consider $g(x) > -3$ and $g(x) < -3$
	\Rightarrow root in interval (-1.2, -1.1)			Must have correct values or use
				f(-1.1) > 0, $f(-1.2) < 0$ with full
				explanation to score A1
	Total		16	

The function f is defined for all values of x by

$$f(x) = x^3 - 7x^2 + 14x - 8.$$

It is given that f(1) = 0 and f(2) = 0.

- (a) Find the values of f(3) and f(4). (2 marks)
- (b) Write f(x) as a product of three linear factors. (2 marks)
- (c) The diagram shows the graph of

$$y = x^3 - 7x^2 + 14x - 8.$$

(i) Find
$$\frac{dy}{dx}$$
. (3 marks)

- (ii) State, giving a reason, whether the function f is increasing or decreasing at the point where x = 3. (2 marks)
- (iii) Find $\int (x^3 7x^2 + 14x 8) dx$. (3 marks)
- (iv) Hence find the area of the shaded region enclosed by the graph of y = f(x), for $1 \le x \le 2$, and the x-axis. (3 marks)

Q	Solution	Marks	Total	Comments
8 (a)	f(3) = -2, f(4) = 0	B1B1	2	
(b)	Awareness of factor theorem	M1		PI by answers involving 1, 2, 4
	f(x) = (x-1) (x-2) (x-4)	A1	2	M1A0 for $(x+1)(x+2)(x+4)$ or for two factors correct
(c)(i)	$y' = 3x^2 - 14x + 14$	В3	3	B1 for each term
(ii)	Gradient at $x = 3$ is -1	B1F		ft one wrong coefficient
	Function is decreasing	E1F	2	ft wrong (non-zero) value for gradient at $x = 3$
				Alternative methods: 2/2 for convincing argument based on SP at $x \approx 3.22$ or values $f(a), f(b)$ where $a \le 3 < b$
(iii)	$\int y dx = \frac{1}{4}x^4 - \frac{7}{3}x^3 + 7x^2 - 8x(+c)$	M1A2	3	M1 if at least one term correct; -1 EE
(iv)	Substitution of $x = 1$ and/or $x = 2$	M1		in c's integral (not y or y')
	Both substitutions and subtraction	ml		Subtraction must be right way round
	Area = $\frac{5}{12}$	A1	3	allow AWRT 0.416 or 0.417
	Total		15	