Forces Badge Challenge

Challenge 1

A load of mass 50 kg is supported, in equilibrium, by two ropes. One is at an angle of 30° to the vertical and the other is horizontal, as shown in the diagram. The tensions in these ropes are T_1 newtons and T_2 newtons respectively.

(a) Show that $T_1 = 566$, correct to 3 significant figures. (3 marks)

(b) Find T_2 . (4 marks)

Challenge 2

Two forces, $\mathbf{F}_1 = (3\mathbf{i} + 4\mathbf{j}) \, N$ and $\mathbf{F}_2 = (6\mathbf{i} - 8\mathbf{j}) \, N$, act on a particle. The resultant of these two forces is \mathbf{F} . The unit vectors \mathbf{i} and \mathbf{j} are perpendicular.

(a) Find \mathbf{F} . (2 marks)

(b) Find the magnitude of \mathbf{F} . (2 marks)

(c) Find the acute angle between \mathbf{F} and the unit vector \mathbf{i} . (3 marks)

Challenge 3

A crate, of mass 50 kg, is at rest on a warehouse floor. The floor is rough and horizontal. The coefficient of friction between the crate and the floor is μ . A rope is attached to the crate at an angle of 30° to the horizontal. The tension in the rope is 100 N. The crate is shown in the diagram.

Model the crate as a particle.

- (a) Draw and label a diagram to show the forces acting on the crate. (1 mark)
- (b) Show that the magnitude of the normal reaction force acting on the crate is 440 N.

 (3 marks)
- (c) If the crate remains at rest, μ must satisfy the inequality $\mu \ge k$. Find k. (3 marks)

Final Challenge

A block, of mass $7 \, \text{kg}$, is placed on a rough slope that is inclined at 30° to the horizontal, as shown in the diagram. The block remains at rest in this position.

- (a) Draw a diagram to show the forces acting on the block. (1 mark)
- (b) Find the magnitude of the normal reaction force acting on the block. (2 marks)
- (c) Find the magnitude of the friction force acting on the block. (2 marks)
- (d) The coefficient of friction between the block and the plane is μ . Find an inequality that μ must satisfy. (2 marks)
- (e) A similar block, of mass 14 kg, is placed on the slope. Does this block remain at rest or slide? Give a reason for your answer. (2 marks)

