Exponentials and Logarithms

Given that $p = \log_2 3$ and $q = \log_2 5$, find expressions in terms of p and q for

(a)
$$\log_2 45$$
, (3)
(b) $\log_2 0.3$ (3)
(a) $= \log_2 (3^2 \times 5) = 2 \log_2 3 + \log_2 5 = 2p + q$ M1 A1
(b) $= \log_2 \frac{3}{5\times 2} = \log_2 3 - \log_2 5 - \log_2 2$ M1
 $= p - q - 1$ B1 A1 (6)
(a) Given that $t = \log_3 x$, find expressions in terms of t for
(i) $\log_3 x^2$,
(ii) $\log_9 x$. (4)
(b) Hence, or otherwise, find to 3 significant figures the value of x such that
 $\log_3 x^2 - \log_9 x = 4$. (3)
(a) (i) $= 2 \log_3 x = 2t$ M1 A1
(ii) $= \frac{\log_3 x}{\log_3 9} = \frac{\log_3 x}{2} = \frac{1}{2}t$ M1 A1
(b) $2t - \frac{1}{2}t = 4$ T = $\frac{8}{3}$ M1
 $\log_3 x = \frac{8}{3}$, $x = 3^{\frac{8}{3}} = 18.7$ M1 A1 (7)

(a) Evaluate

 $\log_3 27 - \log_8 4.$ (4)

(b) Solve the equation

$$4^{x} - 3(2^{x+1}) = 0.$$
 (5)

(a)
$$= 3 - \log_8 8^{\frac{2}{3}}$$

 $= 3 - \frac{2}{3} = \frac{7}{3}$
(b) $(2^2)^x - 3(2 \times 2^x) = 0$
 $(2^x)^2 - 6(2^x) = 0$
 $2^x(2^x - 6) = 0$
 $2^x = 0$ (no solutions) or 6
 $x = \frac{\lg 6}{12} = 2.58$ (3sf)
M1 A1 (9)

(a) Given that

 $\log_2 (y-1) = 1 + \log_2 x,$

show that

$$y = 2x + 1. \tag{3}$$

(b) Solve the simultaneous equations

$\log_2(y-1) = 1 + \log_2 x$	
$2\log_3 y = 2 + \log_3 x$	(7)

(a)
$$\log_2 (y-1) - \log_2 x = 1$$
, $\log_2 \frac{y-1}{x} = 1$ M1
 $\frac{y-1}{x} = 2^1 = 2$ M1
 $y-1 = 2x$, $y = 2x+1$ A1

(b)
$$2 \log_3 y = 2 + \log_3 x \implies \log_3 y^2 - \log_3 x = 2$$

 $\frac{y^2}{2} = 3^2 = 9$ M1

sub.
$$y = 2x + 1$$

 $y^2 = 9x$
 $(2x + 1)^2 = 9x$
 $4x^2 + 4x + 1 = 9x$
 $4x^2 - 5x + 1 = 0$
 $(4x - 1)(x - 1) = 0$
 $x = \frac{1}{4}, 1$
 $\therefore x = \frac{1}{4}, y = \frac{3}{2}$ or $x = 1, y = 3$
A1
M1
A1
(10)