Core 4: Trigonometry

Past Exam Questions 2006 - 2013

Name:

3	It is	given that $3\cos\theta - 2\sin\theta = R\cos(\theta + \alpha)$, where $R > 0$ and $0^{\circ} < \alpha < 90^{\circ}$.	
	(a)	Find the value of <i>R</i> .	(1 mark)
	(b)	Show that $\alpha \approx 33.7^{\circ}$.	(2 marks)
	(c)	Hence write down the maximum value of $3\cos\theta - 2\sin\theta$ and find a positive of θ at which this maximum value occurs.	value (3 marks)

6	(a)	Express $\cos 2x$ in the for	m $a\cos^2 x + b$, where a and b are con	stants. (2 marks)
---	-----	------------------------------	---	-------------------

June 2006

4	(a)	(i)	Express $\sin 2x$ in terms of $\sin x$ and $\cos x$.	(1 mark)
		(ii)	Express $\cos 2x$ in terms of $\cos x$.	(1 mark)
	(b)	Show	r that	
			$\sin 2x - \tan x = \tan x \cos 2x$	
		for al	l values of x.	(3 marks)
	(c)	Solve the equation $\sin 2x - \tan x = 0$, giving all solutions in degrees in the interval $0^\circ < x < 360^\circ$. (4 marks)		interval (4 marks)

January 2007

3	(a)	Express $\cos 2x$ in terms of $\sin x$.		
	(b)	(i)	Hence show that $3\sin x - \cos 2x = 2\sin^2 x + 3\sin x - 1$ for all value	tes of x . (2 marks)
		(ii)	Solve the equation $3\sin x - \cos 2x = 1$ for $0^\circ < x < 360^\circ$.	(4 marks)

7 (a) Use the identity

$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$$

to express $\tan 2x$ in terms of $\tan x$.

(b) Show that

$$2 - 2\tan x - \frac{2\tan x}{\tan 2x} = (1 - \tan x)^2$$

for all values of x, $\tan 2x \neq 0$.

(4 marks)

(2 marks)

3	(a)	Express $4\cos x + 3\sin x$ in the form $R\cos(x - \alpha)$, where $R > 0$ and $0^\circ < \alpha < 360^\circ$, giving your value for α to the nearest 0.1°. (3 marks)
	(b)	Hence solve the equation $4\cos x + 3\sin x = 2$ in the interval $0^\circ < x < 360^\circ$, giving all solutions to the nearest 0.1°. (4 marks)
	(c)	Write down the minimum value of $4\cos x + 3\sin x$ and find the value of x in the interval $0^\circ < x < 360^\circ$ at which this minimum value occurs. (3 marks)

January 2008

7	(a)	(i)	Express $6\sin\theta + 8\cos\theta$ in the form $R\sin(\theta + \alpha)$, where $R > 0$ and $0^\circ < \alpha < 90^\circ$. Give your value for α to the nearest 0.1°.	(2 marks)
		(ii)	Hence solve the equation $6 \sin 2x + 8 \cos 2x = 7$, giving all solutions to nearest 0.1° in the interval 0° < x < 360°.	the (4 marks)
	(b)	(i)	Prove the identity $\frac{\sin 2x}{1 - \cos 2x} = \frac{1}{\tan x}$.	(4 marks)
		(ii)	Hence solve the equation	
			$\frac{\sin 2x}{1 - \cos 2x} = \tan x$	

giving all solutions in the interval $0^{\circ} < x < 360^{\circ}$.

June 2008

3 (a) By writing $\sin 3x$ as $\sin(x + 2x)$, show that $\sin 3x = 3 \sin x - 4 \sin^3 x$ for all values of x. (5 marks)

(4 marks)

Express $\sin x - 3\cos x$ in the form $R\sin(x-\alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$. Give 2 (a) your value of α in radians to two decimal places. (3 marks) (b) Hence: write down the minimum value of $\sin x - 3\cos x$; (1 mark)(i) find the value of x in the interval $0 < x < 2\pi$ at which this minimum value occurs, (ii) giving your value of x in radians to two decimal places. (2 marks) 5 (a) Express $\sin 2x$ in terms of $\sin x$ and $\cos x$. (1 mark) Solve the equation (b) $5\sin 2x + 3\cos x = 0$ giving all solutions in the interval $0^{\circ} \le x \le 360^{\circ}$ to the nearest 0.1°, where appropriate. (4 marks) (c) Given that $\sin 2x + \cos 2x = 1 + \sin x$ and $\sin x \neq 0$, show that $2(\cos x - \sin x) = 1$. (4 marks) June 2009 Show that the equation $3\cos 2x + 7\cos x + 5 = 0$ can be written in the form 6 (a) (i) $a\cos^2 x + b\cos x + c = 0$, where a, b and c are integers. (3 marks) (ii) Hence find the possible values of $\cos x$. (2 marks)

- (b) (i) Express $7\sin\theta + 3\cos\theta$ in the form $R\sin(\theta + \alpha)$, where R > 0 and α is an acute angle. Give your value of α to the nearest 0.1°. (3 marks)
 - (ii) Hence solve the equation $7\sin\theta + 3\cos\theta = 4$ for all solutions in the interval $0^{\circ} \le \theta \le 360^{\circ}$, giving θ to the nearest 0.1° . (3 marks)

(c) (i) Given that β is an acute angle and that $\tan \beta = 2\sqrt{2}$, show that $\cos \beta = \frac{1}{3}$. (2 marks)

(ii) Hence show that $\sin 2\beta = p\sqrt{2}$, where p is a rational number. (2 marks)

2 (a) Express cos x + 3 sin x in the form R cos(x - α), where R > 0 and 0 < α < π/2. Give your value of α, in radians, to three decimal places. (3 marks)
(b) (i) Hence write down the minimum value of cos x + 3 sin x. (1 mark)
(ii) Find the value of x in the interval 0 ≤ x ≤ 2π at which this minimum occurs, giving your answer, in radians, to three decimal places. (2 marks)
(c) Solve the equation cos x + 3 sin x = 2 in the interval 0 ≤ x ≤ 2π, giving all solutions, in radians, to three decimal places. (4 marks)

6 (a) (i) Express $\sin 2\theta$ and $\cos 2\theta$ in terms of $\sin \theta$ and $\cos \theta$. (2 marks)

(ii) Given that $0 < \theta < \frac{\pi}{2}$ and $\cos \theta = \frac{3}{5}$, show that $\sin 2\theta = \frac{24}{25}$ and find the value of $\cos 2\theta$. (2 marks)

June 2010

5 (a) (i) Show that the equation 3 cos 2x + 2 sin x + 1 = 0 can be written in the form 3 sin² x - sin x - 2 = 0 (3 marks)
(ii) Hence, given that 3 cos 2x + 2 sin x + 1 = 0, find the possible values of sin x. (2 marks)
(b) (i) Express 3 cos 2x + 2 sin 2x in the form R cos(2x - α), where R > 0 and 0° < α < 90°, giving α to the nearest 0.1°. (3 marks)
(ii) Hence solve the equation 3 cos 2x + 2 sin 2x + 1 = 0

for all solutions in the interval $0^{\circ} < x < 180^{\circ}$, giving x to the nearest 0.1°.

(3 marks)

January 2011

1 (a)	Express $2\sin x + 5\cos x$ in the form $R\sin(x + \alpha)$, where $R > 0$ and $0^{\circ} <$ Give your value of α to the nearest 0.1° .	α < 90°. (3 marks)
(b) (i)	Write down the maximum value of $2\sin x + 5\cos x$.	(1 mark)
(ii)	Find the value of x in the interval $0^{\circ} \le x \le 360^{\circ}$ at which this maximum giving the value of x to the nearest 0.1° .	occurs, (2 marks)

6 (a) (i) Given that $\tan 2x + \tan x = 0$, show that $\tan x = 0$ or $\tan^2 x = 3$. (3 marks)

- (ii) Hence find all solutions of $\tan 2x + \tan x = 0$ in the interval $0^{\circ} < x < 180^{\circ}$.
- (b) (i) Given that $\cos x \neq 0$, show that the equation

$$\sin 2x = \cos x \cos 2x$$

can be written in the form

$$2\sin^2 x + 2\sin x - 1 = 0$$
 (3 marks)

(ii) Show that all solutions of the equation $2\sin^2 x + 2\sin x - 1 = 0$ are given by $\sin x = \frac{\sqrt{3} - 1}{p}$, where p is an integer. (3 marks)

January 2012

6 (a) Use the Factor Theorem to show that 4x - 3 is a factor of

$$16x^3 + 11x - 15$$
 (2 marks)

(b) Given that $x = \cos \theta$, show that the equation

 $27\cos\theta\cos2\theta + 19\sin\theta\sin2\theta - 15 = 0$

can be written in the form

$$16x^3 + 11x - 15 = 0 (4 marks)$$

(c) Hence show that the only solutions of the equation

 $27\cos\theta\cos2\theta + 19\sin\theta\sin2\theta - 15 = 0$

are given by $\cos \theta = \frac{3}{4}$.

(4 marks)

(1 mark)

2 (a) Express sin x - 3 cos x in the form R sin(x - α), where R > 0 and 0° < α < 90°, giving your value of α to the nearest 0.1°. (3 marks)
(b) Hence find the values of x in the interval 0° < x < 360° for which sin x - 3 cos x + 2 = 0 giving your values of x to the nearest degree. (4 marks)

January 2013

3 (a) (i) Express 3 cos x + 2 sin x in the form R cos(x - α), where R > 0 and 0° < α < 90°, giving your value of α to the nearest 0.1°. (3 marks)
(ii) Hence find the minimum value of 3 cos x + 2 sin x and the value of x in the interval 0° < x < 360° where the minimum occurs. Give your value of x to the nearest 0.1°. (3 marks)
(b) (i) Show that cot x - sin 2x = cot x cos 2x for 0° < x < 180°. (3 marks)
(ii) Hence, or otherwise, solve the equation

$$\cot x - \sin 2x = 0$$

in the interval $0^{\circ} < x < 180^{\circ}$.

June 2013

2	The acute angles α and β are given by $\tan \alpha = \frac{2}{\sqrt{5}}$ and $\tan \beta = \frac{1}{2}$.	
(a) (i)	Show that $\sin \alpha = \frac{2}{3}$, and find the exact value of $\cos \alpha$.	(2 marks)
(ii)	Hence find the exact value of $\sin 2\alpha$.	(2 marks)
(b)	Show that the exact value of $\cos(\alpha - \beta)$ can be expressed as $\frac{2}{15}(k + \sqrt{5})$, is an integer.	where k (4 marks)

5 (c) (i)	Show that the equation $2\cos 2\theta \sin \theta + 9\sin \theta + 3 = 0$ can be written as	
	$4x^3 - 11x - 3 = 0$, where $x = \sin \theta$.	(3 marks)

(3 marks)