Core 1: Surds

Past Paper Questions 2006-2013

Name:

January 2006 Question 1

(a)	Simplify $(\sqrt{5}+2)(\sqrt{5}-2)$.	(2 marks)
(b)	Express $\sqrt{8} + \sqrt{18}$ in the form $n\sqrt{2}$, where <i>n</i> is an integer.	(2 marks)

June 2006 Question 4

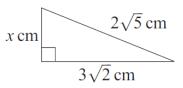
(a)	Express $(4\sqrt{5}-1)(\sqrt{5}+3)$ in the form $p+q\sqrt{5}$, where p and q are integers. (3 marks))
(b)	Show that $\frac{\sqrt{75} - \sqrt{27}}{\sqrt{3}}$ is an integer and find its value. (3 marks))

January 2007 Question 3

(a) Express
$$\frac{\sqrt{63}}{3} + \frac{14}{\sqrt{7}}$$
 in the form $n\sqrt{7}$, where *n* is an integer. (3 marks)
(b) Express $\frac{\sqrt{7}+1}{\sqrt{7}-2}$ in the form $p\sqrt{7}+q$, where *p* and *q* are integers. (4 marks)

January 2008 Question 3

June 2008 Question 2


It is given that
$$x = \sqrt{3}$$
 and $y = \sqrt{12}$.
Find, in the simplest form, the value of:
(a) xy ;
(b) $\frac{y}{x}$;
(c) $(x+y)^2$.
(c) $(x+y)^2$.
(c) $(x+y)^2$.
(c) $(x+y)^2$.

January 209 Question 3

(a)	Express $\frac{7+\sqrt{5}}{3+\sqrt{5}}$ in the form $m+n\sqrt{5}$, where <i>m</i> and <i>n</i> are integers.	(4 marks)
(b)	Express $\sqrt{45} + \frac{20}{\sqrt{5}}$ in the form $k\sqrt{5}$, where k is an integer.	(3 marks)

(a) Express
$$\frac{5+\sqrt{7}}{3-\sqrt{7}}$$
 in the form $m+n\sqrt{7}$, where *m* and *n* are integers. (4 marks)

(b) The diagram shows a right-angled triangle.

The hypotenuse has length $2\sqrt{5}$ cm. The other two sides have lengths $3\sqrt{2}$ cm and x cm. Find the value of x. (3 marks)

January 2010 Question 4

(a) Show that
$$\frac{\sqrt{50} + \sqrt{18}}{\sqrt{8}}$$
 is an integer and find its value. (3 marks)
(b) Express $\frac{2\sqrt{7} - 1}{2\sqrt{7} + 5}$ in the form $m + n\sqrt{7}$, where m and n are integers. (4 marks)

June 2010 Question 2

(a) Express
$$(3 - \sqrt{5})^2$$
 in the form $m + n\sqrt{5}$, where *m* and *n* are integers. (2 marks)
(b) Hence express $\frac{(3 - \sqrt{5})^2}{1 + \sqrt{5}}$ in the form $p + q\sqrt{5}$, where *p* and *q* are integers.
(4 marks)

January 2011 Question 2

(a) Simplify
$$(3\sqrt{3})^2$$
. (1 mark)
(b) Express $\frac{4\sqrt{3}+3\sqrt{7}}{3\sqrt{3}+\sqrt{7}}$ in the form $\frac{m+\sqrt{21}}{n}$, where *m* and *n* are integers. (4 marks)

June 2012

1 Express
$$\frac{5\sqrt{3}-6}{2\sqrt{3}+3}$$
 in the form $m + n\sqrt{3}$, where *m* and *n* are integers. (4 marks)

January 2012

3 (a) (i) Simplify
$$(3\sqrt{2})^2$$
. (1 mark)
(ii) Show that $(3\sqrt{2}-1)^2 + (3+\sqrt{2})^2$ is an integer and find its value. (4 marks)
(b) Express $\frac{4\sqrt{5}-7\sqrt{2}}{2\sqrt{5}+\sqrt{2}}$ in the form $m - \sqrt{n}$, where m and n are integers. (4 marks)

January 2013

3 (a) (i) Express
$$\sqrt{18}$$
 in the form $k\sqrt{2}$, where k is an integer. (1 mark)
(ii) Simplify $\frac{\sqrt{8}}{\sqrt{18} + \sqrt{32}}$. (3 marks)
(b) Express $\frac{7\sqrt{2} - \sqrt{3}}{2\sqrt{2} - \sqrt{3}}$ in the form $m + \sqrt{n}$, where m and n are integers. (4 marks)

June 2013