S1: Linear Regression

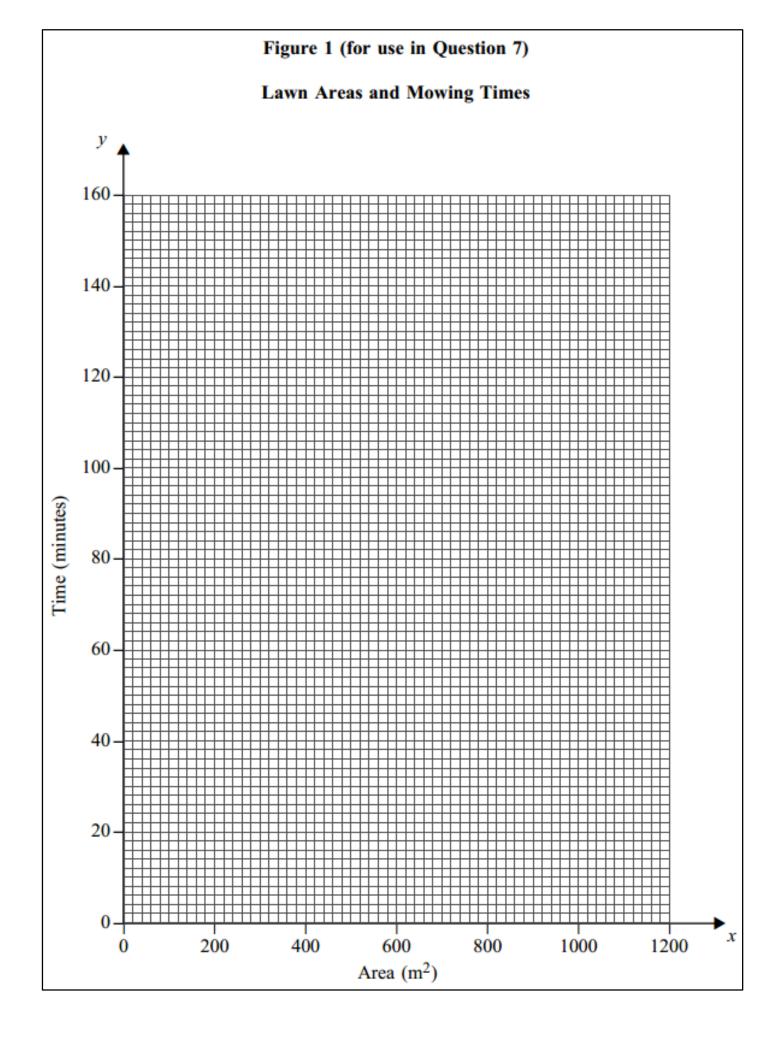
Past Paper Questions 2006 - 2013

Name:

January 2006

- At a certain small restaurant, the waiting time is defined as the time between sitting down at 1 a table and a waiter first arriving at the table. This waiting time is dependent upon the number of other customers already seated in the restaurant. Alex is a customer who visited the restaurant on 10 separate days. The table shows, for each of these days, the number, x, of customers already seated and his waiting time, y minutes. 9 3 4 10 8 12 7 11 2 6 х 6 5 9 13 9 12 4 7 11 11 y Calculate the equation of the least squares regression line of y on x in the form y = a + bx. (a) (4 marks) (b) Give an interpretation, in context, for each of your values of a and b. (2 marks) (c) Use your regression equation to estimate Alex's waiting time when the number of customers already seated in the restaurant is: (i) 5; (ii) 25. (2 marks)
 - (d) Comment on the likely reliability of each of your estimates in part (c), given that, for the regression line calculated in part (a), the values of the 10 residuals lie between +1.1 minutes and -1.1 minutes. (3 marks)

A new car tyre is fitted to a wheel. The tyre is inflated to its recommended pressure of 3 265 kPa and the wheel left unused. At 3-month intervals thereafter, the tyre pressure is measured with the following results: Time after fitting 0 3 6 9 12 15 18 21 24 (x months) Tyre pressure 265 250 240 235 225 215 210 195 180 (y kPa) (i) Calculate the equation of the least squares regression line of y on x. (4 marks) (a) (ii) Interpret in context the value for the gradient of your line. (2 marks) Comment on the value for the intercept with the y-axis of your line. (2 marks) (iii) (b) The tyre manufacturer states that, when one of these new tyres is fitted to the wheel of a car and then inflated to 265 kPa, a suitable regression equation is of the form y = 265 + bxThe manufacturer also states that, as the car is used, the tyre pressure will decrease at twice the rate of that found in part (a). (i) Suggest a suitable value for b. (2 marks) (ii) One of these new tyres is fitted to the wheel of a car and inflated to 265 kPa. The car is then used for 8 months, after which the tyre pressure is checked for the first time. Show that, accepting the manufacturer's statements, the tyre pressure can be expected to have fallen below its minimum safety value of 220 kPa. (2 marks) January 2007 7 [Figure 1, printed on the insert, is provided for use in this question.] Stan is a retired academic who supplements his pension by mowing lawns for customers who live nearby.


As part of a review of his charges for this work, he measures the areas, $x m^2$, of a random sample of eight of his customers' lawns and notes the times, y minutes, that it takes him to mow these lawns. His results are shown in the table.

Customer	Α	В	С	D	E	F	G	Н
x	360	140	860	600	1180	540	260	480
у	50	25	135	70	140	90	55	70

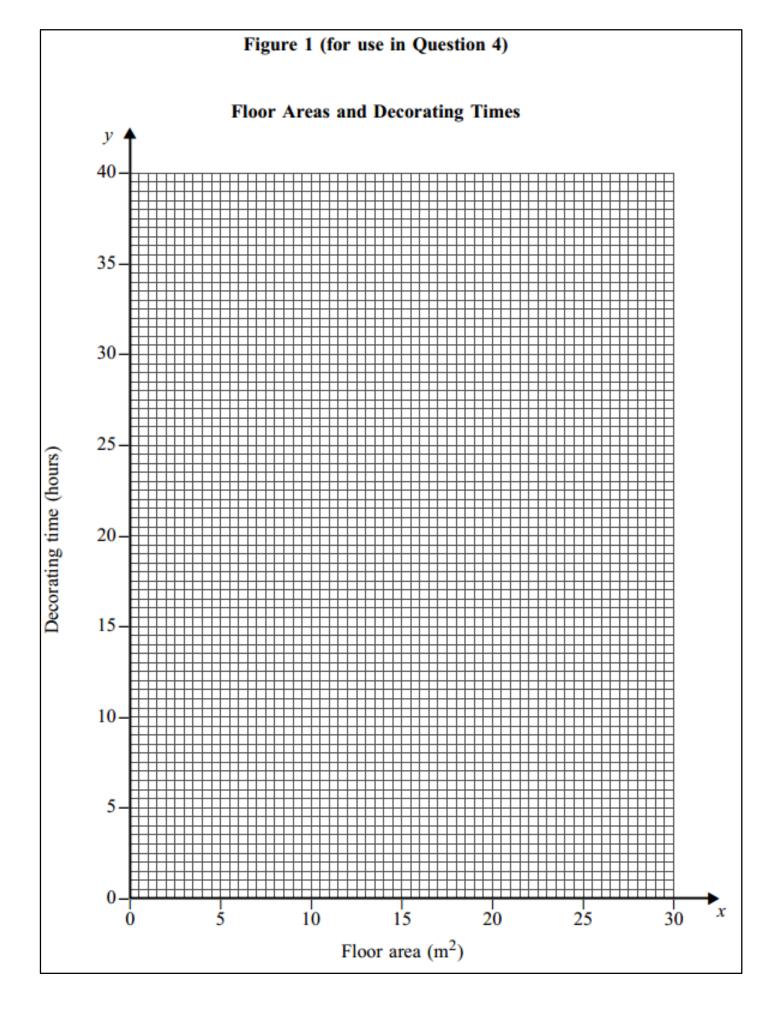
(a) On **Figure 1**, plot a scatter diagram of these data.

- (b) Calculate the equation of the least squares regression line of y on x. Draw your line on Figure 1. (6 marks)
- (c) Calculate the value of the residual for Customer H and indicate how your value is confirmed by your scatter diagram. (3 marks)
- (d) Given that Stan charges $\pounds 12$ per hour, estimate the charge for mowing a customer's lawn that has an area of 560 m^2 . (4 marks)

(2 marks)

June 2007 Bob, a gardener, measures the time taken, y minutes, for 60 grams of weedkiller pellets to 5 dissolve in 10 litres of water at different set temperatures, $x \circ C$. His results are shown in the table. 16 20 24 28 32 40 44 48 52 36 56 x 4.7 2.0 4.3 3.8 3.5 3.0 2.7 2.4 1.8 1.6 1.1 y State why the explanatory variable is temperature. (a) (1 mark)(b) Calculate the equation of the least squares regression line y = a + bx. (4 marks) Interpret, in the context of this question, your value for *b*. (c) (i) (2 marks) (ii) Explain why no sensible practical interpretation can be given for your value of a. (2 marks) (i) Estimate the time taken to dissolve 60 grams of weedkiller pellets in 10 litres of (d)

- water at 30 °C. (2 marks)
 - (ii) Show why the equation cannot be used to make a valid estimate of the time taken to dissolve 60 grams of weedkiller pellets in 10 litres of water at 75 °C. (2 marks)


January 2008

4 [Figure 1, printed on the insert, is provided for use in this question.]

Roseen is a self-employed decorator who wishes to estimate the times that it will take her to decorate bedrooms based upon their floor areas. She records the floor area, $x m^2$, and the decorating time, y hours, for each of 10 bedrooms she has recently decorated.

x	11.0	22.0	7.5	21.0	13.0	16.5	14.0	16.0	18.5	20.5
y	15.0	35.0	16.0	23.5	24.0	17.5	14.5	27.5	22.5	34.5

(a)	On F	Figure 1 , plot a scatter diagram of these data.	(2 marks)
(b)	Calc	ulate the equation of the least squares regression line of y on x .	(4 marks)
(c)	Draw	your regression line on Figure 1.	(2 marks)
(d)	(i)	Use your regression equation to estimate the time that Roseen will take decorate a bedroom with a floor area of 15 m^2 .	to (2 marks)
	(ii)	Making reference to Figure 1 , comment on the likely reliability of your in part (d)(i).	estimate (2 marks)

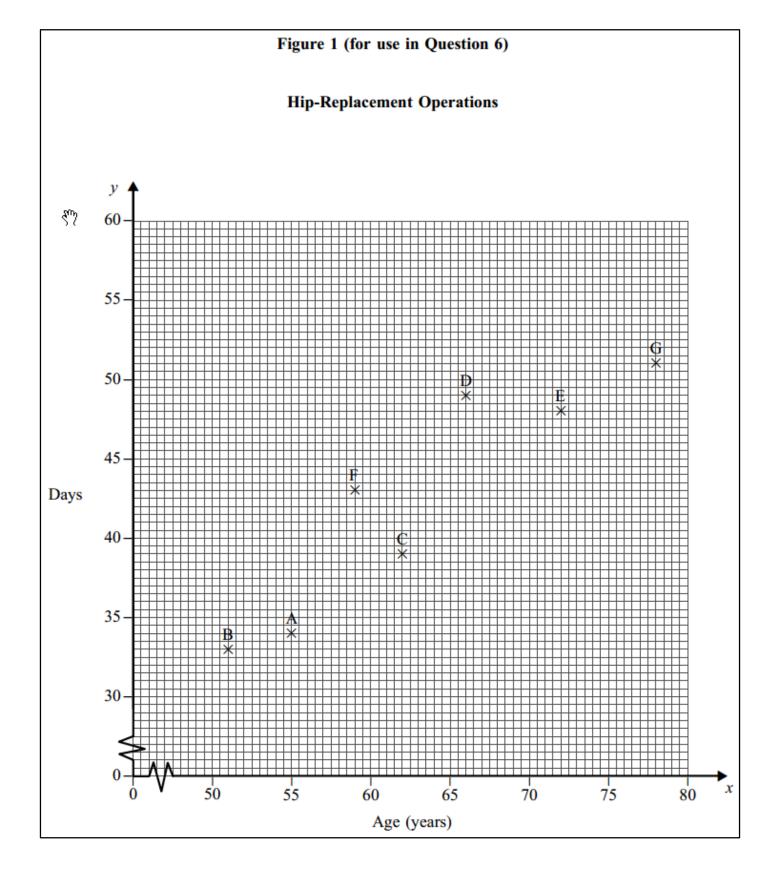
1 The table shows the times taken, y minutes, for a wood glue to dry at different air temperatures, $x \, {}^{\circ}C$.

x	10	12	15	18	20	22	25	28	30
у	42.9	40.6	38.5	35.4	33.0	30.7	28.0	25.3	22.6

(a) Calculate the equation of the least squares regression line y = a + bx. (4 marks)

(b) Estimate the time taken for the glue to dry when the air temperature is 21 °C.

(2 marks)


January 2009

6 [Figure 1, printed on the insert, is provided for use in this question.]

For a random sample of 10 patients who underwent hip-replacement operations, records were kept of their ages, x years, and of the number of days, y, following their operations before they were able to walk unaided safely.

Patient	Α	В	С	D	E	F	G	Н	Ι	J
x	55	51	62	66	72	59	78	55	62	70
У	34	33	39	49	48	43	51	41	46	51

On Figure 1, complete the scatter diagram for these data. (a) (2 marks) Calculate the equation of the least squares regression line of y on x. (b) (4 marks) (c) Draw your regression line on Figure 1. (2 marks) In fact, patients H, I and J were males and the other 7 patients were females. (d)Calculate the mean of the residuals for the 3 male patients. (4 marks) (i) Hence estimate, for a male patient aged 65 years, the number of days following (ii) his hip-replacement operation before he is able to walk unaided safely. (3 marks)

4	held at	t of an in a consta d x days	nt temp	perature.	The b	lock slov	wly dis	solves,	and its	weigh	t, y grams,
								1			I
	<i>x</i>	days	5	10	15 20	30	40	50	60	75	
	У	grams	47	44 4	42 38	3 35	27	23	16	9	
(a)	Calcul	ate the ec	juation	of the l	east squ	ares reg	ression	line of	y on x		(4 marks
(b)	Hence	estimate,	to the	nearest	gram, tl	he initia	l weigh	t of the	block.		(1 marl
purc		l from a	filling s	station, t							<i>(3 marks</i>) ers, <i>x</i> , who el
P										1	
		x	230	184	165	147	241	174	210	-	
		v	4551	3410	3252	3756	3787	4024	4254		
		у	4551	3410	3252	3756	3787	4024	4254		
(a)	Calculat	<i>y</i> the equ									(4 marks
(a) (b)		the equ	lation o	f the lea	st squar	es regre	ssion li	ne of y	on <i>x</i> .	ers pur	chase fuel.
	Estimate	the equ	iation o ime of likely i	f the lea fuel sold	st squar during y of you	es regre a week ur estima	ssion lin in which ate in pa	ne of <i>y</i> ch 200 o art (b),	on <i>x</i> . custome	hat, fo	<i>(2 marks</i> r the

6

During a study of reaction times, each of a random sample of 12 people, aged between 40 and 80 years, was asked to react as quickly as possible to a stimulus displayed on a computer screen.

Their ages, x years, and reaction times, y milliseconds, are shown in the table.

Person	Age (x years)	Reaction time (y ms)
Α	41	520
В	54	750
С	66	650
D	72	920
E	71	280
F	57	620
G	60	740
Н	47	950
Ι	77	970
J	65	780
K	51	550
L	59	730

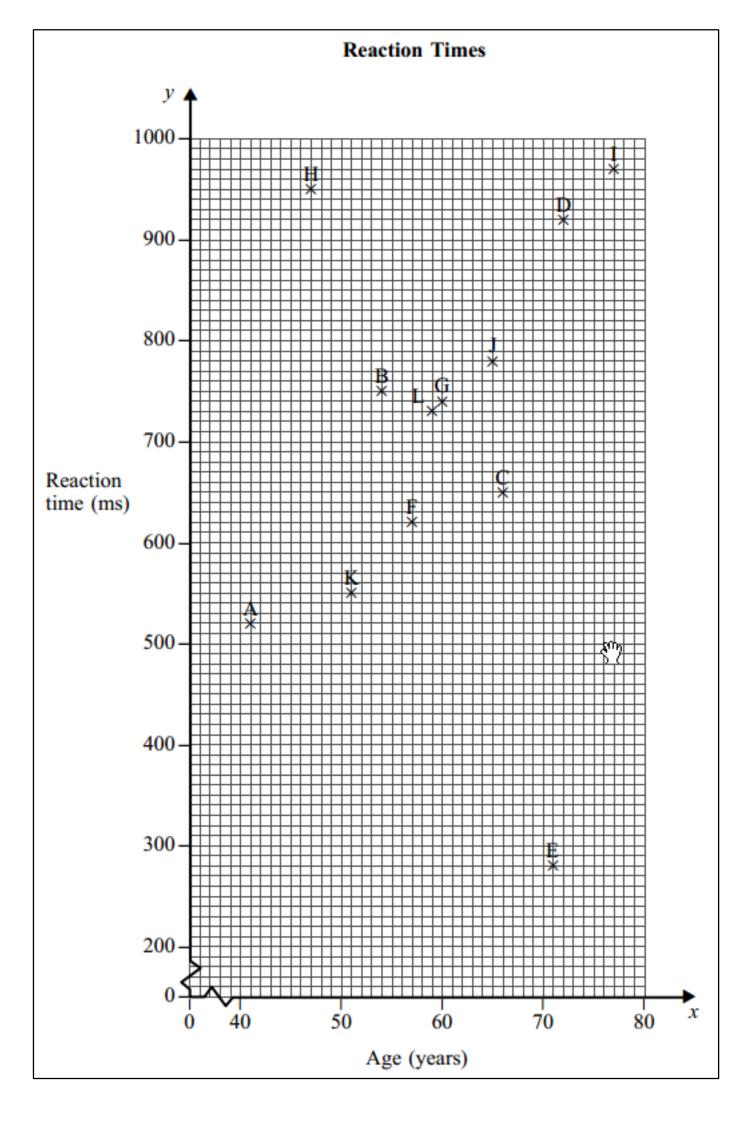
(a) Calculate the equation of the least squares regression line of y on x. (4 marks) $\xi^{(n)}$

(b) (i) Draw your regression line on the scatter diagram on page 16.

- (ii) Comment on what this reveals.
- (c) It was later discovered that the reaction times for persons E and H had been recorded incorrectly. The values should have been 820 and 590 respectively.

After making these corrections, computations gave

 $S_{xx} = 1272$ $S_{xy} = 14760$ $\bar{x} = 60$ $\bar{y} = 720$


(i) Using the symbol ⊙, plot the correct values for persons E and H on the scatter diagram on page 16. (1 mark)

(ii) Recalculate the equation of the least squares regression line of y on x, and draw this regression line on the scatter diagram on page 16. (3 marks)

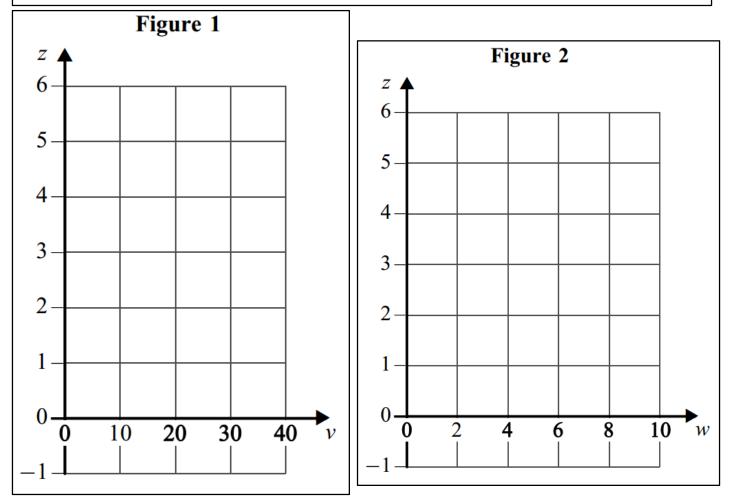
(iii) Hence revise as necessary your comments in part (b)(ii). (2 marks)

(2 marks)

(2 marks)

January 2011

	-				regularly					-		
							r 7.30 a	m and t	hen tak	es y n	ninutes to	
	arrive	at the h	nospital	's recep	otion des	k.						
	His res	sults for	r 11 mo	ornings	are show	vn in the	table.					
x	0	5	10	15	20	25	30	35	40	45	50	
у	31	42	32	58	47	56	79	68	89	95	85	
(a)	-	Explain why the time taken by Craig between leaving home and arriving at the hospital's reception desk is the response variable. (1 mark)										
(b) \$7			equation form		e least so bx .	quares re	gression	n line of	f y on x	, writi	ng your (5 mai	rk
(c)	_		-		meeds to a me at 7.4		the hos	pital's r	eception	n desk	no later	
					utes bef dive your			•		ive at	the (5 mai	rk
(d) (i)	Use yo	our equ	ation to	estima	ite y whe	x = 83	5.				(1 ma	v
(ii)					and one 1 d)(i) is ur				text of	this qu	uestion as (2 mai	_
									text of	this qu		_
ne 2011	why yo	our esti	mate ir	n part (c	d)(i) is ur	nlikely to	be rea	listic.				rk
(ii) ine 2011 3 (a)	why yo During resort. He susp	a parti pected t of tha	mate in cular su that the at day's	ummer	d)(i) is un holiday, s takings,	Rick wo	o be rea	a fish a	and chip	p shop dent u	(2 mai	sie
ne 2011	why yo During resort. He susp forecase the pre-	a parti a parti pected t of that vious d	that the tay's ay.	ummer e shop's maxim	d)(i) is un holiday, s takings,	Rick wo $f(x) = \frac{f(x)}{2}$	b be real prked in a weekc x °C, ir	a fish a lay were the res	and chip e depen sort, ma	o shop dent u de at	(2 mail o at a seas upon the 6.00 pm c	rk
ne 2011	why yo During resort. He susp forecass the present	a parti pected t of tha vious d estigate eekdays	that the tay's ay.	ummer e shop's maxim	d)(i) is un holiday, s takings, num temp	Rick wo $f(x) = \frac{f(x)}{2}$	b be real prked in a weekc x °C, ir	a fish a lay were the res	and chip e depen sort, ma for a ra	o shop dent u de at	(2 mail o at a seas upon the 6.00 pm c	rk
ne 2011	why yo During resort. He susp forecase the present To invest of 7 we	a parti pected t of tha vious d estigate eekdays	mate ir cular su that the t day's lay. this su s during 3	ummer shop's maxim spicion g July.	d)(i) is un holiday, s takings, num temp n, he reco	Rick wo Rick wo f_{y} , on perature, orded val	o be rea orked in a week $x^{\circ}C$, ir lues of :	a fish a lay were a the rest and $y = \frac{20}{20}$	and chip e depen cort, ma for a ra	o shop dent u de at undom	(2 mail o at a seas upon the 6.00 pm c	rk


- (ii) Estimate the shop's takings on a weekday during July when the maximum temperature was forecast to be 24 °C.
 (2 marks)
- (iii) Explain why your equation may not be suitable for estimating the shop's takings on a weekday during February. (1 mark)
- (iv) Describe, in the context of this question, a variable other than the maximum temperature, x, that may affect y.(1 mark)

- 3 (b) Seren, who also worked in the fish and chip shop, investigated the possible linear relationship between the shop's takings, $\pounds z$, recorded in $\pounds 000s$, and **each** of two other explanatory variables, v and w.
 - (i) She calculated correctly that the regression line of z on v had a z-intercept of -1 and a gradient of 0.15.

Draw this line, for values of v from 0 to 40, on Figure 1 below.

(ii) She also calculated correctly that the regression line of z on w had a z-intercept of 5 and a gradient of -0.40.

Draw this line, for values of w from 0 to 10, on Figure 2 opposite. (3 marks)

January 2012

			• •		1	. 1		11 .				•		6	: 6
5	type cont	e of w tent, x	vood a	as a so	ource its con	of en rrespo	ergy. onding	At g g calo	iven f rific v	ixed l value,	levels	of th	e woo	od's n	pecific noisture rning was
	x	5	10	15	20	25	30	35	40	45	50	55	60	65	
5 ⁰ 7	у	5.2	4.7	4.3	4.0	3.2	2.8	2.5	2.2	1.8	1.5	1.3	1.0	0.6	
(a)	Exp	Explain why calorific value is the response variable. (1 mark)													
(b)		calculate the equation of the least squares regression line of y on x, giving your nswer in the form $y = a + bx$. (5 marks)													
(c)	Inte	rpret,	in co	ntext,	your	value	es for	a and	1 <i>b</i> .						(3 marks)
(d)		-	-	tion to per ce		mate	the wo	ood's	calor	ific va	alue v	vhen i	t has	a mo	isture (2 marks)
(e)	Cal	culate	the v	value	of the	resid	lual fo	or the	point	(35,2	2.5).				(2 marks)
(f)				value racy o							-0.2	8 and	+0.2	3, co	mment on (1 mark)
(g) (i)		<u> </u>		l reas when			-						o estir	nate t	he wood's (1 mark)
(ii)	sup	port, v	why y		quatio	on car	nnot b	e use	d to e		-				nerical value (2 marks)

3								t, y_A fractures			Salt	A th	at wil	l disso	olve in
	x	10	15	20	25	30	35	5 40	4	5 5	50	60	70	80	
	У А	20	35	48	57	77	92	2 10	1 11	1 1	21	137	159	182	
(a)	Calcu	late tl	he equ	ation	of th	e lea	ist sq	uares	regres	ssion	lin	e of y	v_A on	x.	(4 mar
(b)	The d	The data in the above table are plotted on the scatter diagram on the opposite page.													
	Draw	Draw your regression liste on this scatter diagram. (2 m											(2 mar		
(c)		For water temperatures in the range 10 °C to 80 °C, the maximum weight, y_B gra of <i>Salt B</i> that will dissolve in 100 grams of water is given by the equation													
						$y_B =$	= 60.1	1 + 0.2	255 <i>x</i>						
(i)	Draw	this l	ine or	the s	scatte	r dia	gram								(2 mar
(ii)) Estimate the water temperature at which the maximum weight of <i>Salt A</i> that dissolve in 100 grams of water is the same as that of <i>Salt B</i> .										that will				
(11)						ater i	is the	same	as th	at of	Sa	lt B.			(1 ma
(iii)	dissol For S weigh distin	ve in alt A	100 g and <i>S</i> will o	grams <i>alt B</i> , dissol	of wa	are 1	the et	ffects	of wa	ter t	emp	oeratu			(1 ma naximum ntify two (2 mar
(iii) Inuary 201	dissol For <i>S</i> weigh distin 3 Bob,	alt A for that a chu	100 g and S will of ference	alt B, dissol es.	of wa comp ve in , deci	bare 1 100 des t	the et gram	ffects s of w	of wa vater.	ter t You	emp ir an	beratu nswei e of a	shou	ld ide	naximum ntify two (2 mar
(iii) nuary 201	dissol For <i>S</i> weigh distin 3 Bob, manu From	alt A at that ct diff a chu a chu a chu a bo m. H	100 g and S will of ference urch w rer's b x cont Ie ligh	alt B, dissol es. arden orand caining	of wa comp ve in , deci of bee g a lan e cand	des t des t rge n le ar	the et gram to inv x can numbe	ffects s of w restiga dle. 1 er of s rer it 1	of wa vater. te the Each of uch c nas b	liter t You life cand andl urneo	emp ir an time le is es, l 1 co	e of a 3 30 c	partient output	uld ide	naximum ntify two (2 mar
(iii) anuary 201 1	dissol For <i>S</i> weigh distin 3 Bob, manu From	alt A at that ct diff a chu ifactur a a box om. H ds its	100 g and S will of ference with w rer's b rer's b x cont le ligh lengt	alt B, dissol es. arden orand caining ts the n, y cr	of wa comp ve in , deci of bee g a lan e cand n, to t	des t des t rge n le ar	the et gram to inv x can numbe	ffects s of w restiga dle. 1 er of s rer it 1	of wa vater. te the Each of uch c nas b	liter t You life cand andl urneo	emp ur an time le is es, l 1 co is re	e of a s 30 c he sel ontinu esults	partient output	uld ide	naximum ntify two <i>(2 mar</i>
(iii) anuary 201 1	dissol For <i>S</i> weigh distin 3 Bob, manu From	we in $alt A$ in that ct different a chur if a bor m. Hinds its	100 g and S will of ference wrch w rer's b x cont I lengtl k x	$\begin{array}{c c} rams \\ alt B, \\ dissol \\ es. \\ \hline arden \\ rand \\ rand \\ raining \\ ns the \\ n, y cr \\ \hline 5 \\ 1 \\ \end{array}$	of wa comp ve in , deci of bea g a lan e cand n, to t	des t des t rge n le ar the n	the end gram to inv x can number nd, af neares	ffects s of w restiga idle. 1 er of s ter it 1 t cent	of wa vater. te the Each of uch c nas bu	ter t You life cand andl urned e. H	emp ar an time le is le s, l l co is re 4	e of a s 30 c s he selontinu esults	partion m in lects cously are s	uld ide	naximum ntify two <i>(2 mar</i>
(iii) anuary 201 1	dissol For <i>S</i> weigh distin 3 Bob, manu From rando recor	alt A at that ct diff a chu factur a box om. H ds its	100 g and S will of ference with we rer's b x cont le light length x 2 alue t	$\begin{array}{c} \text{alt } B, \\ \text{dissol} \\ \text{es.} \\ \hline \\ \text{arden} \\ \text{randen} \\ \text{rand} \\ \text{rand} \\ \text{rand} \\ \text{rand} \\ \text{rand} \\ \text{rand} \\ \hline \\ \text{rand} \\ \text{rand} \\ \hline \\ \hline \\ \text{rand} \\ \hline \\ \hline \\ \text{rand} \\ \hline \\ \hline \\ \hline \\ \text{rand} \\ \hline \\ $	of wa comp ve in , deci of bee g a lan e cand n, to t 25 2 20 wo	des t des t eswa: rge n le ar the n	the efficiency of the efficien	ffects s of w restiga dle. 1 er of s ter it 1 t cent 25 16	of wa vater. te the Each of uch c nas br imetro 30 11	andl andl arneo 2 1ife and 3 5 9	emp ur an time le is le s, l 1 co is re 4	beratunswer e of a s 30 c he selventinu $esultscontinutesultsconti$	partian m in l lects c ously are s 45 2	cular length one car for x hown	naximum ntify two <i>(2 mar</i>
(iii) anuary 201 1	dissol For <i>S</i> weigh distin 3 Bob, manu From rando recor	alt A at that ct diff a chu ifactur a a box om. H ds its	100 g and S will of ference with of rech we rer's b x contour le light length x 2 alue t line, 2	rams alt B, dissol es. rarden brand raining the h, y cr 5 1 7 2 hat yc y = a	of wa comp ve in , deci of bee g a lan e cand n, to t 0 1 25 2 2 ou wo + bx	des t des t eswa: rge n le ar the n 5 21 uld e	the efficiency of the efficien	ffects s of w restiga dle. 1 er of s ter it 1 t cent 25 16	of wavater. te the Each of uch contained 30 11 a in the	life and and urneo e. H 35 9	emp ur an time le is es, 1 1 co is re 4 2 2	beratunswei e of a s 30 c he sel ontinu esults $\frac{10}{5}$	partia m in f lects c ously are s 45 2 f the f	ld ide	naximum ntify two <i>(2 mar</i>)
(iii) anuary 201 1 ∛? (a)	dissol For <i>S</i> weigh distin 3 Bob, manu From rando recor	alt A at that ct diff a chu ifactur a a box om. H ds its	100 g and S will of ference with with of rech we rer's b x contours the light length x 2 alue t line, he equilibrium	rams alt B, dissol es. rarden brand raining that sthe h, y cr 5 1 7 2 hat yc y = a uation	of wa comp ve in , deci of bea g a land e cand n, to the 0 1 25 2 ou wo + bx h of the	des t 100 des t eswa: rge n le ar the n 5 21 uld e	the efficiency of the efficien	ffects s of w restiga dle. 1 er of s ter it 1 t cent 25 16 t for a uares	of wavater. te the Each of uch contained 30 11 a in the	life and and urneo e. H 35 9	emp ur an time le is es, 1 1 co is re 4 2 2	beratunswei e of a s 30 c he sel ontinu esults $\frac{10}{5}$	partia m in f lects c ously are s 45 2 f the f	ld ide	naximum ntify two (2 mar (2 mar ndle at hours, he in the tabl quares (1 ma

Comment on this claim, giving a numerical justification for your answer. (2 marks)

4 5"?	The girth, g metres, the length, l metres, and the weight, y kilograms, of easily sample of 20 pigs were measured.	ich of a
	The data collected is summarised as follows.	
	$S_{gg} = 0.1196$ $S_{ll} = 0.0436$ $S_{yy} = 5880$ $S_{gy} = 24.15$ $S_{ly} = 10.25$	
(a)	Calculate the value of the product moment correlation coefficient between:	
(i)	girth and weight;	
(ii)	length and weight.	(3 marks)
(b)	Interpret, in context, each of the values that you obtained in part (a).	(3 marks)
(c)	Weighing pigs requires expensive equipment, whereas measuring their girth lengths simply requires a tape measure. With this in mind, the following for proposed to make an estimate of a pig's weight, x kilograms, from its girth length.	ormula is
	$x = 69.3 \times g^2 \times l$	
	Applying this formula to the relevant data on the 20 pigs resulted in	
	$S_{xx} = 5656.15$ $S_{xy} = 5662.97$	
(i)	By calculating a third value of the product moment correlation coefficient, which of g , l or x is the most strongly correlated with y , the weight.	state (2 marks)
(ii)	Estimate the weight of a pig that has a girth of 1.25 metres and a length of 1.15 metres.	(2 marks)
(iii)	Given the additional information that $\overline{x} = 115.4$ and $\overline{y} = 116.0$, calculate equation of the least squares regression line of y on x, in the form $y = a + a$	
(iv)	Comment on the likely accuracy of the estimated weight found in part (c)(i answer should make reference to the value of the product moment correlation coefficient found in part (c)(i) and to the values of b and a found in part (c)	on