Core 1: Polynomials

Past Exam Questions 2006 - 2013

Name:

6 The polynomial p(x) is given by

$$\mathbf{p}(x) = x^3 + x^2 - 10x + 8$$

- (a) (i) Using the factor theorem, show that x 2 is a factor of p(x). (2 marks)
 - (ii) Hence express p(x) as the product of three linear factors. (3 marks)
- (b) Sketch the curve with equation $y = x^3 + x^2 10x + 8$, showing the coordinates of the points where the curve cuts the axes.

(You are not required to calculate the coordinates of the stationary points.) (4 marks)

June 2006

6 The polynomial
$$p(x)$$
 is given by $p(x) = x^3 - 4x^2 + 3x$.

- (a) Use the Factor Theorem to show that x 3 is a factor of p(x). (2 marks)
- (b) Express p(x) as the product of three linear factors. (2 marks)
- (c) (i) Use the Remainder Theorem to find the remainder, r, when p(x) is divided by x 2. (2 marks)
 - (ii) Using algebraic division, or otherwise, express p(x) in the form

$$(x-2)(x^2 + ax + b) + r$$

where a, b and r are constants.

(4 marks)

January 2007

1 The polynomial p(x) is given by

$$p(x) = x^3 - 4x^2 - 7x + k$$

where k is a constant.

- (a) (i) Given that x + 2 is a factor of p(x), show that k = 10. (2 marks)
 - (ii) Express p(x) as the product of three linear factors. (3 marks)
- (b) Use the Remainder Theorem to find the remainder when p(x) is divided by x 3. (2 marks)
- (c) Sketch the curve with equation $y = x^3 4x^2 7x + 10$, indicating the values where the curve crosses the *x*-axis and the *y*-axis. (You are **not** required to find the coordinates of the stationary points.) (4 marks)

6	(a)	The	polynomial $f(x)$ is given by $f(x) = x^3 + 4x - 5$.	
		(i)	Use the Factor Theorem to show that $x - 1$ is a factor of $f(x)$.	(2 marks)
		(ii)	Express $f(x)$ in the form $(x-1)(x^2 + px + q)$, where p and q are integrated on $(x-1)(x^2 + px + q)$.	egers. (2 marks)
		(iii)	Hence show that the equation $f(x) = 0$ has exactly one real root and value.	state its (3 marks)
Janı	uary 20	08		
6	(a)	The j	polynomial $p(x)$ is given by $p(x) = x^3 - 7x - 6$.	
		(i)	Use the Factor Theorem to show that $x + 1$ is a factor of $p(x)$.	(2 marks)

(ii) Express
$$p(x) = x^3 - 7x - 6$$
 as the product of three linear factors. (3 marks)

June 2008

6 The polynomial p(x) is given by $p(x) = x^3 + x^2 - 8x - 12$.

- (a) Use the Remainder Theorem to find the remainder when p(x) is divided by x 1. (2 marks)
- (b) (i) Use the Factor Theorem to show that x + 2 is a factor of p(x). (2 marks)
 - (ii) Express p(x) as the product of linear factors.
- (c) (i) The curve with equation $y = x^3 + x^2 8x 12$ passes through the point (0, k). State the value of k. (1 mark)
 - (ii) Sketch the graph of $y = x^3 + x^2 8x 12$, indicating the values of x where the curve touches or crosses the x-axis. (3 marks)

(3 marks)

January 2009

6	(a)	The	polynomial $p(x)$ is given by $p(x) = x^3 + x - 10$.	
		(i)	Use the Factor Theorem to show that $x - 2$ is a factor of $p(x)$. (2 matrix)	ırks)
		(ii)	Express $p(x)$ in the form $(x-2)(x^2 + ax + b)$, where a and b are constants. (2 ma	ırks)

4	(a)	The	polynomial $p(x)$ is given by $p(x) = x^3 - x + 6$.	
		(i)	Find the remainder when $p(x)$ is divided by $x - 3$.	(2 marks)
		(ii)	Use the Factor Theorem to show that $x + 2$ is a factor of $p(x)$.	(2 marks)
		(iii)	Express $p(x) = x^3 - x + 6$ in the form $(x + 2)(x^2 + bx + c)$, where b a integers.	and c are (2 marks)
		(iv)	The equation $p(x) = 0$ has one root equal to -2 . Show that the equation other real roots.	on has no (2 marks)

January 2010

1	The	polynomial $p(x)$ is given by $p(x) = x^3 - 13x - 12$.	omial $p(x)$ is given by $p(x) = x^3 - 13x - 12$.	
	(a)	Use the Factor Theorem to show that $x + 3$ is a factor of $p(x)$.	(2 marks)	
	(b)	Express $p(x)$ as the product of three linear factors.	(3 marks)	I

June 2010

3	The polynomial $p(x)$ is given by	
	$p(x) = x^3 + 7x^2 + 7x - 15$	
(a) (i)	Use the Factor Theorem to show that $x + 3$ is a factor of $p(x)$.	(2 marks)
(ii)	Express $p(x)$ as the product of three linear factors.	(3 marks)
(b)	Use the Remainder Theorem to find the remainder when $p(x)$ is divided by	x - 2. (2 marks)
(c) (i)	Verify that $p(-1) < p(0)$.	(1 mark)
(ii)	Sketch the curve with equation $y = x^3 + 7x^2 + 7x - 15$, indicating the value the curve crosses the coordinate axes.	es where (4 marks)

5 (a) (i)	Sketch the curve with equation $y = x(x-2)^2$.	(3 marks)
(ii)	Show that the equation $x(x-2)^2 = 3$ can be expressed as	
	$x^3 - 4x^2 + 4x - 3 = 0$	(1 mark)
(b)	The polynomial $p(x)$ is given by $p(x) = x^3 - 4x^2 + 4x - 3$.	
(i)	Find the remainder when $p(x)$ is divided by $x + 1$.	(2 marks)
(ii)	Use the Factor Theorem to show that $x - 3$ is a factor of $p(x)$.	(2 marks)
(iii)	Express $p(x)$ in the form $(x-3)(x^2+bx+c)$, where b and c are integers.	(2 marks)
(c)	Hence show that the equation $x(x-2)^2 = 3$ has only one real root and station value of this root.	te the (3 marks)
June 2011		
5	The polynomial $p(x)$ is given by $p(x) = x^3 - 2x^2 + 3$.	
(a)	Use the Remainder Theorem to find the remainder when $p(x)$ is divided by	x - 3. (2 marks)

(b) Use the Factor Theorem to show that x + 1 is a factor of p(x). (2 marks)

- (c) (i) Express $p(x) = x^3 2x^2 + 3$ in the form $(x+1)(x^2 + bx + c)$, where b and c are integers. (2 marks)
 - (ii) Hence show that the equation p(x) = 0 has exactly one real root. (2 marks)

January 2012

5	The polynomial $p(x)$ is given by $p(x) = x^3 + cx^2 + dx - 12$, where c and d are constants.	
(a)	When $p(x)$ is divided by $x + 2$, the remainder is -150 .	
	Show that $2c - d + 65 = 0$.	(3 marks)
(b)	Given that $x - 3$ is a factor of $p(x)$, find another equation involving c and	1 d. (2 marks)
	Decostring these two equations find the value of a and the value of d	
(c)	By solving these two equations, find the value of c and the value of d .	(3 marks)

June 2	2012
--------	------

3	The polynomial $p(x)$ is given by	
	$p(x) = x^3 + 2x^2 - 5x - 6$	
(a) (i)	Use the Factor Theorem to show that $x + 1$ is a factor of $p(x)$.	(2 marks)
(ii)	Express $p(x)$ as the product of three linear factors.	(3 marks)
(b)	Verify that $p(0) > p(1)$.	(2 marks)
(c)	Sketch the curve with equation $y = x^3 + 2x^2 - 5x - 6$, indicating the the curve crosses the x-axis.	values where (3 marks)

5	The polynomial $p(x)$ is given by	
	$p(x) = x^3 - 4x^2 - 3x + 18$	
(a)	Use the Remainder Theorem to find the remainder when $p(x)$ is divided by	x+1. (2 marks)
(b) (i)	Use the Factor Theorem to show that $x - 3$ is a factor of $p(x)$.	(2 marks)
(ii)	Express $p(x)$ as a product of linear factors.	(3 marks)
(c)	Sketch the curve with equation $y = x^3 - 4x^2 - 3x + 18$, stating the values where the curve meets the <i>x</i> -axis.	of x (3 marks)

The polynomial f(x) is given by $f(x) = x^3 - 4x + 15$. 4 (a) Use the Factor Theorem to show that x + 3 is a factor of f(x). (2 marks) (i) (ii) Express f(x) in the form $(x+3)(x^2 + px + q)$, where p and q are integers. (2 marks) A curve has equation $y = x^4 - 8x^2 + 60x + 7$. (b) Find $\frac{dy}{dr}$. (i) (3 marks) (ii) Show that the x-coordinates of any stationary points of the curve satisfy the equation $x^3 - 4x + 15 = 0$ (1 mark) (iii) Use the results above to show that the only stationary point of the curve occurs (2 marks) when x = -3.

(iv) Find the value of
$$\frac{d^2y}{dx^2}$$
 when $x = -3$. (3 marks)

(v) Hence determine, with a reason, whether the curve has a maximum point or a minimum point when x = -3. (1 mark)