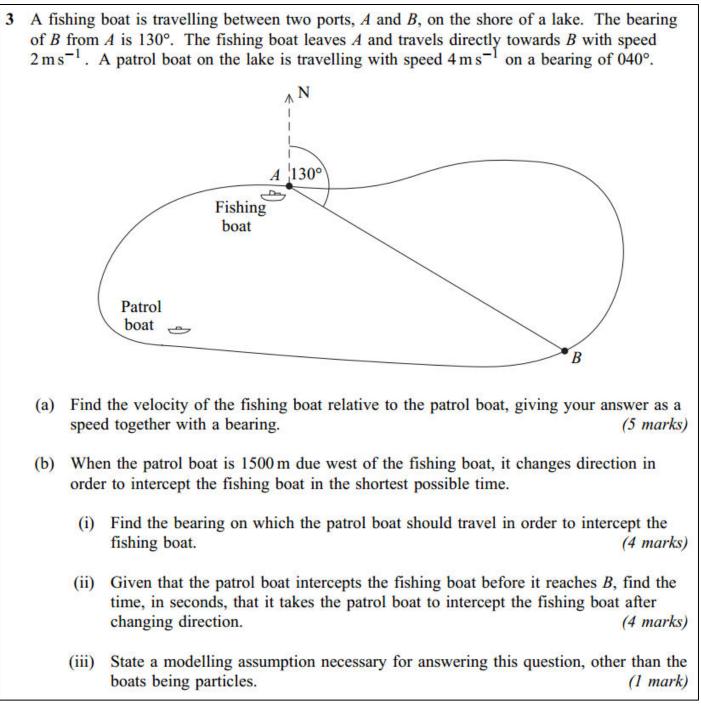
M3: Relative Motion


Past Paper Questions 2006 - 2013

Name:

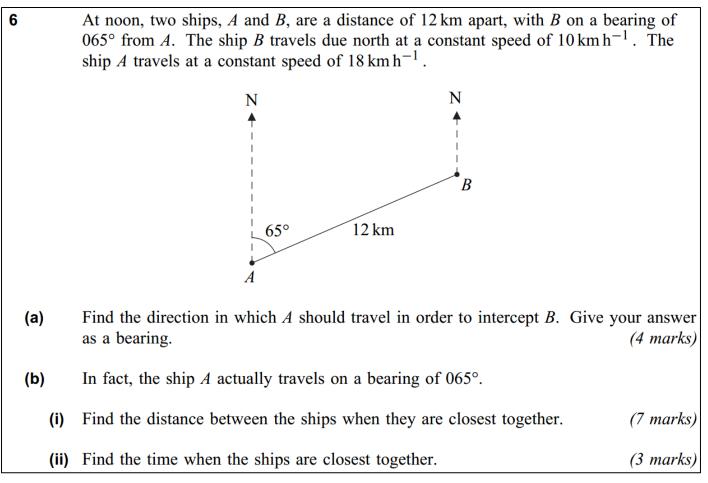
June	2000	Jule 2006					
4	The unit vectors i and j are directed due east and due north respectively.						
	Two cyclists, Aazar and Ben, are cycling on straight horizontal roads with constant velocities of $(6i + 12j) \text{ km h}^{-1}$ and $(12i - 8j) \text{ km h}^{-1}$ respectively. Initially, Aazar and Ben have position vectors $(5i - j) \text{ km}$ and $(18i + 5j) \text{ km}$ respectively, relative to a fixed origin.						
	(a)	Find, as a vector in terms of i and j , the velocity of Ben relative to Aazar.	(2 marks)				
	(b)	r km.					
		Show that					
		$\mathbf{r} = (13 + 6t)\mathbf{i} + (6 - 20t)\mathbf{j}$	(4 marks)				
	(c)	Find the value of t when Aazar and Ben are closest together.	(6 marks)				
	(d)	Find the closest distance between Aazar and Ben.	(2 marks)				
June	2007						
2	The unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are directed due east, due north and vertically upwards respectively.						
	Two helicopters, A and B, are flying with constant velocities of $(20\mathbf{i} - 10\mathbf{j} + 20\mathbf{k}) \mathrm{m s^{-1}}$ and $(30\mathbf{i} + 10\mathbf{j} + 10\mathbf{k}) \mathrm{m s^{-1}}$ respectively. At noon, the position vectors of A and B relative to a fixed origin, O, are $(8000\mathbf{i} + 1500\mathbf{j} + 3000\mathbf{k}) \mathrm{m}$ and $(2000\mathbf{i} + 500\mathbf{j} + 1000\mathbf{k}) \mathrm{m}$ respectively.						
	(a)	Write down the velocity of A relative to B .	(2 marks)				
	(b)	Find the position vector of A relative to B at time t seconds after noon.	(3 marks)				
	(c)	Find the value of t when A and B are closest together.	(5 marks)				
June 2008							
2	The	unit vectors i and j are directed due east and due north respectively.					

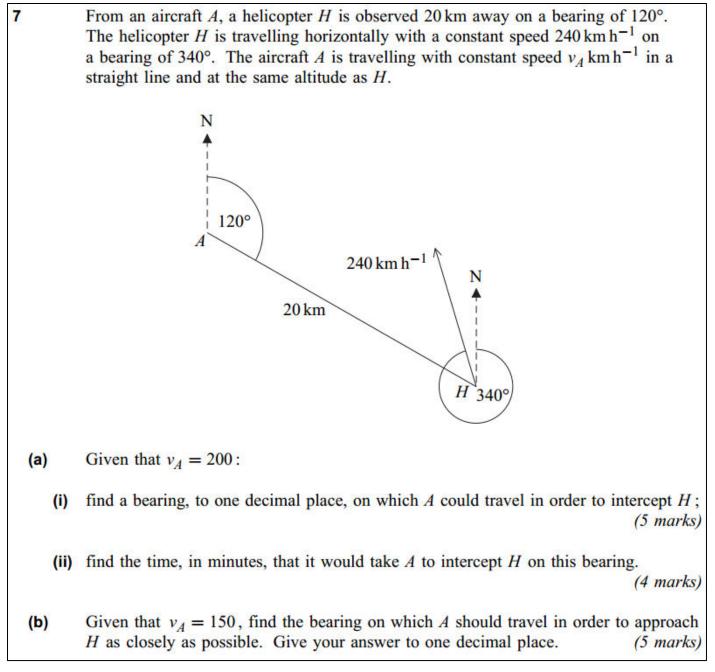
Two runners, Albina and Brian, are running on level parkland with constant velocities of $(5\mathbf{i} - \mathbf{j}) \,\mathrm{m \, s^{-1}}$ and $(3\mathbf{i} + 4\mathbf{j}) \,\mathrm{m \, s^{-1}}$ respectively. Initially, the position vectors of Albina and Brian are $(-60\mathbf{i} + 160\mathbf{j}) \,\mathrm{m}$ and $(40\mathbf{i} - 90\mathbf{j}) \,\mathrm{m}$ respectively, relative to a fixed origin in the parkland.

- (a) Write down the velocity of Brian relative to Albina. (2 marks)
- (b) Find the position vector of Brian relative to Albina *t* seconds after they leave their initial positions. (3 marks)
- (c) Hence determine whether Albina and Brian will collide if they continue running with the same velocities. (3 marks)

June 2010

4	The unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are directed east, north and vertically upwards respectively.		
	At time $t = 0$, the position vectors of two small aeroplanes, A and B, relative fixed origin O are $(-60\mathbf{i} + 30\mathbf{k})$ km and $(-40\mathbf{i} + 10\mathbf{j} - 10\mathbf{k})$ km respective	1	
	The aeroplane A is flying with constant velocity $(250\mathbf{i} + 50\mathbf{j} - 100\mathbf{k}) \mathrm{km}\mathrm{h}^{-1}$ aeroplane B is flying with constant velocity $(200\mathbf{i} + 25\mathbf{j} + 50\mathbf{k}) \mathrm{km}\mathrm{h}^{-1}$.	⁻¹ and the	
(a)	Write down the position vectors of A and B at time t hours.	(3 marks)	
(b)	Show that the position vector of A relative to B at time t hours is $((-20+50t)\mathbf{i} + (-10+25t)\mathbf{j} + (40-150t)\mathbf{k})$ km.	(2 marks)	
(c)	Show that A and B do not collide.	(4 marks)	
(d)	Find the value of t when A and B are closest together.	(6 marks)	
June 2011			
4	The unit vectors \mathbf{i} , \mathbf{j} and \mathbf{k} are directed due east, due north and vertically up respectively.	owards	
A helicopter, A, is travelling in the direction of the vector -2		vith	


A helicopter, A, is travelling in the direction of the vector $-2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}$ with constant speed $140 \,\mathrm{km}\,\mathrm{h}^{-1}$. Another helicopter, B, is travelling in the direction of the vector $2\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ with constant speed $60 \,\mathrm{km}\,\mathrm{h}^{-1}$.


(5 marks)

- (a) Find the velocity of A relative to B.
- (b) Initially, the position vectors of A and B are $(4\mathbf{i} 2\mathbf{j} + 3\mathbf{k})$ km and $(-3\mathbf{i} + 6\mathbf{j} + 3\mathbf{k})$ km respectively, relative to a fixed origin.

Write down the position vector of A relative to B, t hours after they leave their initial positions. (2 marks)

(c) Find the distance between A and B when they are closest together. (8 marks)

