M2: Differential Equations

Past Paper Questions 2006 - 2013

Name:

A student is modelling the motion of a small boat as it moves on a lake. When the speed of the boat is $12 \,\mathrm{m\,s^{-1}}$, the engine is switched off. At time t seconds later, it has a velocity of $v \,\mathrm{m\,s^{-1}}$ and experiences a resistance force of magnitude 20v newtons. The mass of the boat is $80 \,\mathrm{kg}$.

To set up a simple model for the motion of the boat, the student assumes that the water in the lake is still and that the boat travels in a straight line.

(a) Explain how these two assumptions allow the student to create a simple model.

(2 marks)

(b) State one other assumption that the student should make.

(1 mark)

(c) (i) Express $\frac{dv}{dt}$ in terms of v.

(2 marks)

(ii) Find an expression for v in terms of t.

(5 marks)

June 2006

- A particle of mass 20 kg moves along a straight horizontal line. At time t seconds the velocity of the particle is $v \, \text{m s}^{-1}$. A resistance force of magnitude $10 \sqrt{v}$ newtons acts on the particle while it is moving. At time t = 0 the velocity of the particle is $25 \, \text{m s}^{-1}$.
 - (a) Show that, at time t

$$v = \left(\frac{20 - t}{4}\right)^2 \tag{7 marks}$$

(b) State the value of t when the particle comes to rest.

(1 mark)

January 2007

- 7 A motorcycle has a maximum power of 72 kilowatts. The motorcycle and its rider are travelling along a straight horizontal road. When they are moving at a speed of $V \, \text{m s}^{-1}$, they experience a total resistance force of magnitude kV newtons, where k is a constant.
 - (a) The maximum speed of the motorcycle and its rider is $60 \,\mathrm{m \, s^{-1}}$.

Show that
$$k = 20$$
. (3 marks)

(b) When the motorcycle is travelling at $20 \,\mathrm{m\,s^{-1}}$, the rider allows the motorcycle to freewheel so that the only horizontal force acting is the resistance force. When the motorcycle has been freewheeling for t seconds, its speed is $v \,\mathrm{m\,s^{-1}}$ and the magnitude of the resistance force is 20v newtons.

The mass of the motorcycle and its rider is 500 kg.

(i) Show that
$$\frac{dv}{dt} = -\frac{v}{25}$$
. (2 marks)

(ii) Hence find the time that it takes for the speed of the motorcycle to reduce from $20 \,\mathrm{m \, s^{-1}}$ to $10 \,\mathrm{m \, s^{-1}}$.

- A stone of mass m is moving along the smooth horizontal floor of a tank which is filled with a viscous liquid. At time t, the stone has speed v. As the stone moves, it experiences a resistance force of magnitude λmv , where λ is a constant.
 - (a) Show that

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -\lambda v \tag{2 marks}$$

(b) The initial speed of the stone is U.

Show that

$$v = Ue^{-\lambda t} (4 marks)$$

January 2008

- 8 A car of mass 600 kg is driven along a straight horizontal road. The resistance to motion of the car is kv^2 newtons, where $v \, \text{m s}^{-1}$ is the velocity of the car at time t seconds and k is a constant.
 - (a) When the engine of the car has power 8 kW, show that the equation of motion of the car is

$$600\frac{dv}{dt} - \frac{8000}{v} + kv^2 = 0 (4 marks)$$

- (b) When the velocity of the car is $20 \,\mathrm{m \, s^{-1}}$, the engine is turned off.
 - (i) Show that the equation of motion of the car now becomes

$$600\frac{\mathrm{d}v}{\mathrm{d}t} = -kv^2 \tag{1 mark}$$

(ii) Find, in terms of k, the time taken for the velocity of the car to drop to $10 \,\mathrm{m\,s^{-1}}$.

June 2008

- 6 A car, of mass m, is moving along a straight smooth horizontal road. At time t, the car has speed v. As the car moves, it experiences a resistance force of magnitude 0.05mv. No other horizontal force acts on the car.
 - (a) Show that

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -0.05v\tag{1 mark}$$

(b) When t = 0, the speed of the car is $20 \,\mathrm{m \, s^{-1}}$.

Show that
$$v = 20e^{-0.05t}$$
. (4 marks)

(c) Find the time taken for the speed of the car to reduce to $10 \,\mathrm{m \, s^{-1}}$. (3 marks)

- A stone, of mass 0.05 kg, is moving along the smooth horizontal floor of a tank, which is filled with oil. At time t, the stone has speed v. As the stone moves, it experiences a resistance force of magnitude $0.08v^2$.
 - (a) Show that

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -1.6v^2 \tag{2 marks}$$

(b) The initial speed of the stone is $3 \,\mathrm{m \, s^{-1}}$.

Show that

$$v = \frac{15}{5 + 24t} \tag{5 marks}$$

June 2009

8 A stone, of mass m, is moving in a straight line along smooth horizontal ground.

At time t, the stone has speed v. As the stone moves, it experiences a total resistance force of magnitude $\lambda mv^{\frac{3}{2}}$, where λ is a constant. No other horizontal force acts on the stone.

(a) Show that

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -\lambda v^{\frac{3}{2}} \tag{2 marks}$$

(b) The initial speed of the stone is $9 \,\mathrm{m \, s^{-1}}$.

Show that

$$v = \frac{36}{\left(2 + 3\lambda t\right)^2} \tag{7 marks}$$

(c) Find, in terms of λ , the time taken for the speed of the stone to drop to $4 \,\mathrm{m\,s^{-1}}$.

A golf ball, of mass $m \log t$, is moving in a straight line across smooth horizontal ground. At time t seconds, the golf ball has speed $v m s^{-1}$. As the golf ball moves, it experiences a resistance force of magnitude $0.2mv^{\frac{1}{2}}$ newtons until it comes to rest. No other horizontal force acts on the golf ball.

Model the golf ball as a particle.

(a) Show that

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -0.2v^{\frac{1}{2}} \tag{1 mark}$$

(b) When t = 0, the speed of the golf ball is $16 \,\mathrm{m\,s^{-1}}$.

Show that
$$v = (4 - 0.1t)^2$$
. (5 marks)

- (c) Find the value of t when v = 1. (3 marks)
- (d) Find the distance travelled by the golf ball as its speed decreases from $16 \,\mathrm{m\,s^{-1}}$ to $1 \,\mathrm{m\,s^{-1}}$.

January 2011

- Vicky has mass 65 kg and is skydiving. She steps out of a helicopter and falls vertically. She then waits a short period of time before opening her parachute. The parachute opens at time t = 0 when her speed is $19.6 \,\mathrm{m\,s^{-1}}$, and she then experiences an air resistance force of magnitude 260v newtons, where $v \,\mathrm{m\,s^{-1}}$ is her speed at time t seconds.
 - (a) When t > 0:
 - (i) show that the resultant downward force acting on Vicky is

$$65(9.8 - 4v)$$
 newtons (1 mark)

(ii) show that
$$\frac{dv}{dt} = -4(v - 2.45)$$
. (2 marks)

(b) By showing that
$$\int \frac{1}{v - 2.45} dv = -\int 4 dt$$
, find v in terms of t . (5 marks)

- A car, of mass $m \log t$, is moving along a straight horizontal road. At time t seconds, the car has speed $v m s^{-1}$. As the car moves, it experiences a resistance force of magnitude $2mv^{\frac{5}{4}}$ newtons. No other horizontal force acts on the car.
 - (a) Show that

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -2v^{\frac{5}{4}} \tag{1 mark}$$

(b) The initial speed of the car is $16 \,\mathrm{m \, s^{-1}}$.

Show that

$$v = \left(\frac{2}{t+1}\right)^4 \tag{5 marks}$$

January 2012

Alice places a toy, of mass $0.4 \,\mathrm{kg}$, on a slope. The toy is set in motion with an initial velocity of $1 \,\mathrm{m\,s^{-1}}$ down the slope. The resultant force acting on the toy is (2-4v) newtons, where $v \,\mathrm{m\,s^{-1}}$ is the toy's velocity at time t seconds after it is set in motion.

(a) Show that
$$\frac{dv}{dt} = -10 (v - 0.5)$$
. (2 marks)

(b) By using
$$\int \frac{1}{v - 0.5} dv = -\int 10 dt$$
, find v in terms of t . (5 marks)

(c) Find the time taken for the toy's velocity to reduce to $0.55 \,\mathrm{m\,s^{-1}}$. (3 marks)

June 2012

A stone, of mass 5 kg, is projected vertically downwards, in a viscous liquid, with an initial speed of $7 \,\mathrm{m\,s^{-1}}$.

At time t seconds after it is projected, the stone has speed $v \, \text{m s}^{-1}$ and it experiences a resistance force of magnitude 9.8v newtons.

(a) When $t \ge 0$, show that

$$\frac{\mathrm{d}v}{\mathrm{d}t} = -1.96(v - 5) \tag{2 marks}$$

(b) Find v in terms of t. (5 marks)

6 A car accelerates from rest along a straight horizontal road.

The car's engine produces a constant horizontal force of magnitude 4000 N.

At time t seconds, the speed of the car is $v \, \text{m s}^{-1}$, and a resistance force of magnitude 40v newtons acts upon the car.

The mass of the car is 1600 kg.

(a) Show that
$$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{100 - v}{40}$$
. (2 marks)

(b) Find the velocity of the car at time t. (6 marks)