Core 2: Logarithms

Past Paper Questions 2006-2013

Name:

Logarithms and exponentials

$$
a^{x}=\mathrm{e}^{x \ln a}
$$

3 (a) Use logarithms to solve the equation $0.8^{x}=0.05$, giving your answer to three decimal places.
(b) An infinite geometric series has common ratio r. The sum to infinity of the series is five times the first term of the series.
(i) Show that $r=0.8$.
(ii) Given that the first term of the series is 20 , find the least value of n such that the nth term of the series is less than 1 .

7 It is given that n satisfies the equation

$$
2 \log _{a} n-\log _{a}(5 n-24)=\log _{a} 4
$$

(a) Show that $n^{2}-20 n+96=0$.
(b) Hence find the possible values of n.

5 (a) Given that

$$
\log _{a} x=2 \log _{a} 6-\log _{a} 3
$$

show that $x=12$.
(b) Given that

$$
\log _{a} y+\log _{a} 5=7
$$

express y in terms of a, giving your answer in a form not involving logarithms.
(3 marks)

Question 6
(c) (i) Use logarithms to solve the equation $3^{x}=13$, giving your answer to four decimal places.
(ii) The line $y=k$ intersects the curve $y=27-3^{x}$ at the point where $3^{x}=13$. Find the value of k.

9 (a) Solve the equation $3 \log _{a} x=\log _{a} 8$.
(b) Show that

$$
3 \log _{a} 6-\log _{a} 8=\log _{a} 27
$$

(c) (i) The point $P(3, p)$ lies on the curve $y=3 \log _{10} x-\log _{10} 8$.

Show that $p=\log _{10}\left(\frac{27}{8}\right)$.
(ii) The point $Q(6, q)$ also lies on the curve $y=3 \log _{10} x-\log _{10} 8$.

Show that the gradient of the line $P Q$ is $\log _{10} 2$.

June 2007
6 (c) The line $y=21$ intersects the curve $y=3\left(2^{x}+1\right)$ at the point P.
(i) Show that the x-coordinate of P satisfies the equation

$$
\begin{equation*}
2^{x}=6 \tag{1mark}
\end{equation*}
$$

(ii) Use logarithms to find the x-coordinate of P, giving your answer to three significant figures.

8 (a) It is given that n satisfies the equation

$$
\log _{a} n=\log _{a} 3+\log _{a}(2 n-1)
$$

Find the value of n.
(b) Given that $\log _{a} x=3$ and $\log _{a} y-3 \log _{a} 2=4$:
(i) express x in terms of a;
(ii) express $x y$ in terms of a.

7 (a) Given that

$$
\log _{a} x=\log _{a} 16-\log _{a} 2
$$

write down the value of x.
(b) Given that

$$
\log _{a} y=2 \log _{a} 3+\log _{a} 4+1
$$

express y in terms of a, giving your answer in a form not involving logarithms.

June 2008
5 (a) Write down the value of:
(i) $\log _{a} 1$;
(ii) $\log _{a} a$.
(I mark)
(b) Given that

$$
\log _{a} x=\log _{a} 5+\log _{a} 6-\log _{a} 1.5
$$

find the value of x.

6 (a) Write each of the following in the form $\log _{a} k$, where k is an integer:
(i) $\log _{a} 4+\log _{a} 10$;
(ii) $\log _{a} 16-\log _{a} 2$;
(iii) $3 \log _{a} 5$.
(l mark)
(b) Use logarithms to solve the equation $(1.5)^{3 x}=7.5$, giving your value of x to three decimal places.
(c) Given that $\log _{2} p=m$ and $\log _{8} q=n$, express $p q$ in the form 2^{y}, where y is an expression in m and n.

9 (a) (i) Find the value of p for which $\sqrt{125}=5^{p}$.
(ii) Hence solve the equation $5^{2 x}=\sqrt{125}$.
(b) Use logarithms to solve the equation $3^{2 x-1}=0.05$, giving your value of x to four decimal places.
(c) It is given that

$$
\log _{a} x=2\left(\log _{a} 3+\log _{a} 2\right)-1
$$

Express x in terms of a, giving your answer in a form not involving logarithms.
(4 marks)

January 2010
3 (a) Find the value of x in each of the following:
(i) $\log _{9} x=0$;
(ii) $\log _{9} x=\frac{1}{2}$.
(b) Given that

$$
2 \log _{a} n=\log _{a} 18+\log _{a}(n-4)
$$

find the possible values of n.

June 2010 Question 8
(e) (i) Given that

$$
\log _{a} k=3 \log _{a} 2+\log _{a} 5-\log _{a} 4
$$

show that $k=10$.
(ii) The line $y=\frac{5}{4}$ crosses the curve $y=2^{4 x-3}$ at the point P. Show that the x-coordinate of P is $\frac{1}{4 \log _{10} 2}$.

January 2011
8 (a) Given that $2 \log _{k} x-\log _{k} 5=1$, express k in terms of x. Give your answer in a form not involving logarithms.
(b) Given that $\log _{a} y=\frac{3}{2}$ and that $\log _{4} a=b+2$, show that $y=2^{p}$, where p is an expression in terms of b.

7 (c) Given that

$$
\log _{a}\left(b^{2}\right)+3 \log _{a} y=3+2 \log _{a}\left(\frac{y}{a}\right)
$$

express y in terms of a and b.
Give your answer in a form not involving logarithms.

4 Given that

$$
\log _{a} N-\log _{a} x=\frac{3}{2}
$$

express x in terms of a and N, giving your answer in a form not involving logarithms.

