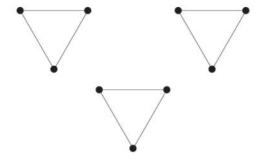
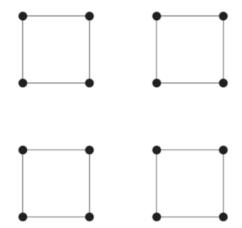
Decision 1: Graphs

Past Paper Questions 2006 - 2013

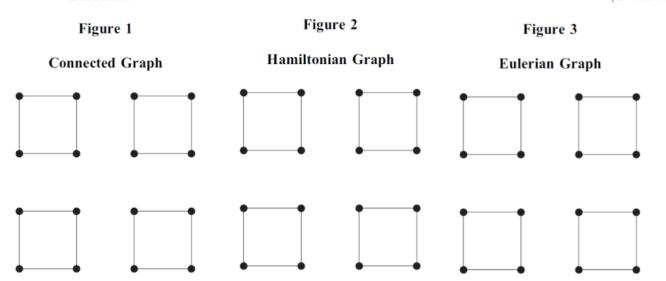

Name:

- 7 A connected graph G has m vertices and n edges.
 - (a) (i) Write down the number of edges in a minimum spanning tree of **G**. (1 mark)
 - (ii) Hence write down an inequality relating m and n. (2 marks)
 - (b) The graph **G** contains a Hamiltonian cycle. Write down the number of edges in this cycle. (1 mark)
 - (c) In the case where **G** is Eulerian, draw a graph of **G** for which m = 6 and n = 12.

 (2 marks)


January 2007

8 (a) The diagram shows a graph **G** with 9 vertices and 9 edges.


- (i) State the minimum number of edges that need to be added to **G** to make a connected graph. Draw an example of such a graph. (2 marks)
- (ii) State the minimum number of edges that need to be added to **G** to make the graph Hamiltonian. Draw an example of such a graph. (2 marks)
- (iii) State the minimum number of edges that need to be added to **G** to make the graph Eulerian. Draw an example of such a graph. (2 marks)
- (b) A complete graph has *n* vertices and is Eulerian.
 - (i) State the condition that n must satisfy. (1 mark)
 - (ii) In addition, the number of edges in a Hamiltonian cycle for the graph is the same as the number of edges in an Eulerian trail. State the value of *n*. (1 mark)

7 (a) The diagram shows a graph with 16 vertices and 16 edges.

- (i) On **Figure 1** below, add the minimum number of edges to make a connected graph.

 (1 mark)
- (ii) On **Figure 2** opposite, add the minimum number of edges to make the graph Hamiltonian. (2 marks)
- (iii) On **Figure 3** opposite, add the minimum number of edges to make the graph Eulerian. (2 marks)

June 2010

- 8 A simple connected graph has six vertices.
 - (a) One vertex has degree x. State the greatest and least possible values of x. (2 marks)
 - **(b)** The six vertices have degrees

$$x-2$$
, $x-2$, x , $2x-4$, $2x-4$, $4x-12$

Find the value of x, justifying your answer.

(2 marks)

lanuam.	2	Λ 1	1
January	Z	נ ט	. Т

- 6 (a) The complete graph K_n has every one of its n vertices connected to each of the other vertices by a single edge.
 - (i) Find the total number of edges in the graph K_5 . (1 mark)
 - (ii) State the number of edges in a minimum spanning tree for the graph K_5 . (1 mark)
 - (iii) State the number of edges in a Hamiltonian cycle for the graph K_5 . (1 mark)
 - (b) A simple graph G has six vertices and nine edges, and G is Eulerian. Draw a sketch to show a possible graph G. (2 marks)

June 2012

- The complete graph K_n (n > 1) has every one of its n vertices connected to each of the other vertices by a single edge.
 - (a) Draw the complete graph K_4 . (1 mark)
 - (b) (i) Find the total number of edges for the graph K_8 .
 - (ii) Give a reason why K_8 is not Eulerian. (2 marks)
 - (c) For the graph K_n , state in terms of n:
 - (i) the total number of edges;
 - (ii) the number of edges in a minimum spanning tree;
 - (iii) the condition for K_n to be Eulerian;
 - (iv) the condition for the number of edges of a Hamiltonian cycle to be equal to the number of edges of an Eulerian cycle. (4 marks)

January 2013

- **7 (a)** A simple connected graph X has eight vertices.
 - (i) State the minimum number of edges of the graph.
 - (ii) Find the maximum number of edges of the graph.

(2 marks)

- (b) A simple connected graph Y has n vertices.
 - (i) State the minimum number of edges of the graph.
 - (ii) Find the maximum number of edges of the graph.

(2 marks)

- (c) A simple graph Z has six vertices and each of the vertices has the same degree d.
 - (i) State the possible values of d.
 - (ii) If Z is connected, state the possible values of d.
 - (iii) If Z is Eulerian, state the possible values of d.

(4 marks)