FP4: Vector and Scalar Products

Past Paper Questions 2006 - 2013

Name:

4 The vectors **a**, **b** and **c** are given by

$$\mathbf{a} = \mathbf{i} - \mathbf{j} - \mathbf{k}$$
, $\mathbf{b} = 2\mathbf{i} + 3\mathbf{j} - \mathbf{k}$ and $\mathbf{c} = 4\mathbf{i} - \mathbf{j} + 5\mathbf{k}$

- (a) (i) Evaluate $\begin{vmatrix} 1 & -1 & -1 \\ 2 & 3 & -1 \\ 4 & -1 & 5 \end{vmatrix}$. (2 marks)
 - (ii) Hence determine whether **a**, **b** and **c** are linearly dependent or independent.

 (1 mark)
- (b) (i) Evaluate **b.c**. (2 marks)
 - (ii) Show that $\mathbf{b} \times \mathbf{c}$ can be expressed in the form $m\mathbf{a}$, where m is a scalar.

 (2 marks)
 - (iii) Use these results to describe the geometrical relationship between **a**, **b** and **c**.

 (1 mark)
- (c) The points A, B and C have position vectors **a**, **b** and **c** respectively relative to an origin O. The points O, A, B and C are four of the eight vertices of a cuboid.

 Determine the volume of this cuboid.

 (2 marks)

January 2007

3 The points P, Q and R have position vectors \mathbf{p} , \mathbf{q} and \mathbf{r} respectively relative to an origin O, where

$$\mathbf{p} = \begin{bmatrix} 1 \\ 1 \\ 4 \end{bmatrix}, \mathbf{q} = \begin{bmatrix} -3 \\ 4 \\ 20 \end{bmatrix} \text{ and } \mathbf{r} = \begin{bmatrix} 9 \\ 2 \\ 4 \end{bmatrix}$$

- (a) (i) Determine $\mathbf{p} \times \mathbf{q}$. (2 marks)
 - (ii) Find the area of triangle *OPQ*. (3 marks)
- (b) Use the scalar triple product to show that **p**, **q** and **r** are linearly dependent, and interpret this result geometrically. (3 marks)

June 2007

Given that $\mathbf{a} \times \mathbf{b} = 3\mathbf{i} + \mathbf{j} + \mathbf{k}$ and that $\mathbf{a} \times \mathbf{c} = -\mathbf{i} - 2\mathbf{j} + \mathbf{k}$, determine:

(a)
$$\mathbf{c} \times \mathbf{a}$$
; (1 mark)

(b)
$$\mathbf{a} \times (\mathbf{b} + \mathbf{c})$$
; (2 marks)

(c)
$$(\mathbf{a} \times \mathbf{b}) \cdot (\mathbf{a} \times \mathbf{c})$$
; (2 marks)

(d)
$$\mathbf{a} \cdot (\mathbf{a} \times \mathbf{c})$$
. (1 mark)

3 Three points, A, B and C, have position vectors

$$\mathbf{a} = \begin{bmatrix} 1 \\ 7 \\ -1 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 5 \\ 1 \\ 1 \end{bmatrix} \text{ and } \mathbf{c} = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$$

respectively.

(a) Using the scalar triple product, or otherwise, show that **a**, **b** and **c** are coplanar.

(2 marks)

(b) (i) Calculate
$$(\mathbf{b} - \mathbf{a}) \times (\mathbf{c} - \mathbf{a})$$
.

(3 marks)

(ii) Hence find, to three significant figures, the area of the triangle ABC. (3 marks)

January 2008

2 It is given that $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} + \mathbf{k}$, $\mathbf{b} = \mathbf{i} + \mathbf{j} - 5\mathbf{k}$ and $\mathbf{c} = \mathbf{i} + 4\mathbf{j} + 28\mathbf{k}$.

(a) Determine:

(1 mark)

(ii)
$$\mathbf{a} \times \mathbf{b}$$
;

(2 marks)

(iii)
$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})$$
.

(2 marks)

(b) Describe the geometrical relationship between the vectors:

(i)
$$\mathbf{a}$$
, \mathbf{b} and $\mathbf{a} \times \mathbf{b}$;

(1 mark)

(ii)
$$\mathbf{a}$$
, \mathbf{b} and \mathbf{c} .

(1 mark)

June 2008

2 The vectors **a**, **b** and **c** are given by

$$\mathbf{a} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$$
, $\mathbf{b} = 2\mathbf{i} + \mathbf{j} + 2\mathbf{k}$ and $\mathbf{c} = -2\mathbf{i} + t\mathbf{j} + 6\mathbf{k}$

where t is a scalar constant.

(a) Determine, in terms of t where appropriate:

(i)
$$\mathbf{a} \times \mathbf{b}$$
;

(2 marks)

(ii)
$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$$
;

(2 marks)

(iii)
$$(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$$
.

(2 marks)

(b) Find the value of t for which **a**, **b** and **c** are linearly dependent.

(2 marks)

(c) Find the value of t for which c is parallel to $\mathbf{a} \times \mathbf{b}$.

(2 marks)

3 The points X, Y and Z have position vectors

$$\mathbf{x} = \begin{bmatrix} 2 \\ 3 \\ 2 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 5 \\ 7 \\ 4 \end{bmatrix} \quad \text{and} \quad \mathbf{z} = \begin{bmatrix} -8 \\ 1 \\ a \end{bmatrix}$$

respectively, relative to the origin O.

(a) Find:

(i)
$$\mathbf{x} \times \mathbf{y}$$
; (2 marks)

(ii)
$$(\mathbf{x} \times \mathbf{y}) \cdot \mathbf{z}$$
. (2 marks)

- (b) Using these results, or otherwise, find:
 - (i) the area of triangle *OXY*; (2 marks)
 - (ii) the value of a for which x, y and z are linearly dependent. (2 marks)

June 2010

1 The position vectors of the points P, Q and R are, respectively,

$$\mathbf{p} = \begin{bmatrix} 3 \\ 4 \\ -1 \end{bmatrix}, \quad \mathbf{q} = \begin{bmatrix} -1 \\ 2 \\ 2 \end{bmatrix} \quad \text{and} \quad \mathbf{r} = \begin{bmatrix} 1 \\ 4 \\ 1 \end{bmatrix}$$

(a) Show that **p**, **q** and **r** are linearly dependent.

(2 marks)

(b) Determine the area of triangle PQR.

(4 marks)

January 2011

The non-zero vectors \mathbf{a} and \mathbf{b} have magnitudes a and b respectively.

Let
$$c = |\mathbf{a} \times \mathbf{b}|$$
 and $d = |\mathbf{a} \cdot \mathbf{b}|$.

By considering the definitions of the vector and scalar products, or otherwise, show that

$$c^2 + d^2 = a^2b^2 \tag{3 marks}$$

June 2011

Given the vectors $\mathbf{p} = \begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix}$, $\mathbf{q} = \begin{bmatrix} 7 \\ -2 \\ 4 \end{bmatrix}$ and $\mathbf{r} = \begin{bmatrix} 2 \\ 3 \\ t \end{bmatrix}$, where t is a scalar

parameter, determine the value of t in each of the following cases:

(a) $\mathbf{p} \times \mathbf{q}$ is parallel to \mathbf{r} ; (3 marks)

(b) p, q and r are linearly dependent. (3 marks)

The vectors \mathbf{a} and \mathbf{b} are such that $\mathbf{a} \cdot \mathbf{b} = 21$, $|\mathbf{a}| = 5\sqrt{2}$ and $|\mathbf{b}| = 3$.

Determine the exact value of $|\mathbf{a} \times \mathbf{b}|$.

(5 marks)

8 For $n \neq 1$, the vectors **a**, **b** and **c** are such that

$$\mathbf{a} = \begin{bmatrix} 1 \\ n \\ n^2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} 2n \\ 2n^2 + n \\ -1 \end{bmatrix} \text{ and } \mathbf{c} = \begin{bmatrix} n-1 \\ n^2 - 1 \\ 1 - n^2 \end{bmatrix}$$

Determine the value of n for which \mathbf{a} , \mathbf{b} and \mathbf{c} are linearly dependent.

(9 marks)

June 2012

1 Find the value of the constant p for which the vectors

$$\mathbf{u} = 3\mathbf{i} + 2\mathbf{j} + p\mathbf{k}$$
, $\mathbf{v} = 7\mathbf{i} - \mathbf{j} + 6\mathbf{k}$ and $\mathbf{w} = 2\mathbf{i} + \mathbf{j} + 3\mathbf{k}$

are linearly dependent.

(3 marks