FP4: Matrix Transformations

Past Paper Questions 2006 2013

Name:

1 Describe the geometrical transformation defined by the matrix

$$
\left[\begin{array}{ccc}
0.6 & 0 & 0.8 \\
0 & 1 & 0 \\
-0.8 & 0 & 0.6
\end{array}\right]
$$

June 2006
2 A transformation is represented by the matrix $\mathbf{A}=\left[\begin{array}{ccc}0.28 & -0.96 & 0 \\ 0.96 & 0.28 & 0 \\ 0 & 0 & 1\end{array}\right]$.
(a) Evaluate $\operatorname{det} \mathbf{A}$.
(b) State the invariant line of the transformation.
(c) Give a full geometrical description of this transformation.

January 2007
$4 \quad$ The matrices $\mathbf{M}_{\mathrm{A}}=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0\end{array}\right]$ and $\mathbf{M}_{\mathrm{B}}=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$ represent the transformations A and B respectively.
(a) Give a full geometrical description of each of A and B.
(b) Transformation C is obtained by carrying out A followed by B .
(i) Find \mathbf{M}_{C}, the matrix of C.
(ii) Hence give a full geometrical description of the single transformation C.

June 2007
6 The matrices \mathbf{A} and \mathbf{B} are given by

$$
\mathbf{A}=\left[\begin{array}{rr}
1 & 1 \\
-1 & 1 \\
1 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 2 & t
\end{array}\right]
$$

(a) Find, in terms of t, the matrices:
(i) $\mathbf{A B}$;
(ii) $\mathbf{B A}$.
(b) Explain why $\mathbf{A B}$ is singular for all values of t.
(c) In the case when $t=-2$, show that the transformation with matrix $\mathbf{B A}$ is the combination of an enlargement, E, and a second transformation, F. Find the scale factor of E and give a full geometrical description of F.

1 Give a full geometrical description of the transformation represented by each of the following matrices:
(a) $\left[\begin{array}{ccc}0.8 & 0 & -0.6 \\ 0 & 1 & 0 \\ 0.6 & 0 & 0.8\end{array}\right]$;
(b) $\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$.
(2 marks)

Jan 2009
$\mathbf{8}$ The plane transformation T has matrix $\mathbf{A}=\left[\begin{array}{rr}1 & -2 \\ 2 & 1\end{array}\right]$, and maps points (x, y) onto image points (X, Y) such that

$$
\left[\begin{array}{c}
X \\
Y
\end{array}\right]=\mathbf{A}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

(a) (i) Find \mathbf{A}^{-1}.
(ii) Hence express each of x and y in terms of X and Y.
(b) Give a full geometrical description of T .
(c) Any plane curve with equation of the form $\frac{x^{2}}{p}+\frac{y^{2}}{q}=1$, where p and q are distinct positive constants, is an ellipse.
(i) Show that the curve E with equation $6 x^{2}+y^{2}=3$ is an ellipse.
(ii) Deduce that the image of the curve E under T has equation

$$
\begin{equation*}
2 X^{2}+4 X Y+5 Y^{2}=15 \tag{2marks}
\end{equation*}
$$

(iii) Explain why the curve with equation $2 x^{2}+4 x y+5 y^{2}=15$ is an ellipse.
(1 mark)
June 2009
2 (a) Write down the 3×3 matrices which represent the transformations A and B, where:
(i) A is a reflection in the plane $y=x$;
(ii) B is a rotation about the z-axis through the angle θ, where $\theta=\frac{\pi}{2}$.
(b) (i) Find the matrix \mathbf{R} which represents the composite transformation

> 'A followed by B'
(ii) Describe the single transformation represented by \mathbf{R}.

1 The 2×2 matrix \mathbf{M} represents the plane transformation T. Write down the value of $\operatorname{det} \mathbf{M}$ in each of the following cases:
(a) T is a rotation;
(b) T is a reflection;
(c) T is a shear;
(d) T is an enlargement with scale factor 3 .

5 The plane transformations T_{A} and T_{B} are represented by the matrices \mathbf{A} and \mathbf{B} respectively, where $\mathbf{A}=\left[\begin{array}{rr}3 & -1 \\ -5 & 2\end{array}\right]$ and $\mathbf{B}=\left[\begin{array}{rr}2 & 5 \\ 5 & 13\end{array}\right]$.
(a) Find the equation of the line which is the image of $y=2 x+1$ under T_{A}.
(b) The rectangle $P Q R S$, with area $4.5 \mathrm{~cm}^{2}$, is mapped onto the parallelogram $P^{\prime} Q^{\prime} R^{\prime} S^{\prime}$ under T_{B}. Determine the area of $P^{\prime} Q^{\prime} R^{\prime} S^{\prime}$.
(c) The transformation T_{C} is the composition

$$
\text { ' } \mathrm{T}_{\mathrm{B}} \text { followed by } \mathrm{T}_{\mathrm{A}} \text { ' }
$$

By finding the matrix which represents T_{C}, give a full geometrical description of T_{C}.
(5 marks)
June 2010
$8 \quad$ The matrix $\left[\begin{array}{rr}12 & 16 \\ -9 & 36\end{array}\right]$ represents the transformation which is the composition, in either order, of the two plane transformations

E: an enlargement, centre O and scale factor $k(k>0)$ and

S: a shear parallel to the line l which passes through O
Show that $k=24$ and find a cartesian equation for l.
June 2011
2 The plane transformation T is the composition of a reflection in the line $y=x \tan \alpha$ followed by an anticlockwise rotation about O through an angle β.

Determine the matrix which represents T , and hence describe T as a single transformation.
(6 marks)

2 Describe the single transformation represented by each of the matrices:
(a) $\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$;
(b) $\left[\begin{array}{ccc}0.6 & 0 & -0.8 \\ 0 & 1 & 0 \\ 0.8 & 0 & 0.6\end{array}\right]$.
$7 \quad$ The plane transformation T is a rotation through θ radians anticlockwise about O, and maps points (x, y) onto image points (X, Y) such that

$$
\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{rr}
c & -s \\
s & c
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

where $c=\cos \theta$ and $s=\sin \theta$.
(a) Write down the inverse of the matrix $\left[\begin{array}{rr}c & -s \\ s & c\end{array}\right]$ and hence show that

$$
x=c X+s Y \text { and } y=-s X+c Y
$$

(b) The curve C has equation $x^{2}-6 x y-7 y^{2}=8$.

The image of C under T is the curve C^{\prime} with equation $p X^{2}+q X Y+r Y^{2}=8$.
(i) Use the results of part (a) to show that

$$
q=6 s^{2}+16 s c-6 c^{2}
$$

and express p and r similarly in terms of c and s.
(ii) Given that θ is an acute angle, find the values of c and s for which $q=0$ and hence in this case express the equation of C^{\prime} in the form

$$
\begin{equation*}
\frac{X^{2}}{a^{2}}-\frac{Y^{2}}{b^{2}}=1 \tag{8marks}
\end{equation*}
$$

(iii) Hence explain why C is a hyperbola.

The linear transformations T_{1} and T_{2} are represented by the matrices

$$
\mathbf{M}_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] \text { and } \mathbf{M}_{2}=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & \frac{\sqrt{3}}{2} \\
0 & 1 & 0 \\
-\frac{\sqrt{3}}{2} & 0 & \frac{1}{2}
\end{array}\right]
$$

respectively.
(a) Give a full geometrical description of the transformations:
(i) T_{1};
(ii) T_{2}.
(b) Find the matrix which represents the transformation T_{1} followed by T_{2}.
(c) The linear transformation T_{3} is represented by the matrix

$$
\mathbf{M}_{3}=\left[\begin{array}{ccc}
k & 2 & -1 \\
1 & 1 & 1 \\
3 & 4 & 1
\end{array}\right]
$$

where k is a constant.
For one particular value of $k, \mathrm{~T}_{3}$ has a line L of invariant points.
(i) Find k.
(ii) Find the Cartesian equations of L in the form $\frac{x}{p}=\frac{y}{q}=\frac{z}{r}$.

