FP4: Matrix Algebra

Past Paper Questions
 2006-2013

Name:

2 The matrices \mathbf{P} and \mathbf{Q} are defined in terms of the constant k by

$$
\mathbf{P}=\left[\begin{array}{rrr}
3 & 2 & 1 \\
1 & -1 & k \\
5 & 3 & 2
\end{array}\right] \quad \text { and } \quad \mathbf{Q}=\left[\begin{array}{rrr}
5 & 4 & 1 \\
3 & k & -1 \\
7 & 3 & 2
\end{array}\right]
$$

(a) Express $\operatorname{det} \mathbf{P}$ and $\operatorname{det} \mathbf{Q}$ in terms of k.
(b) Given that $\operatorname{det}(\mathbf{P Q})=16$, find the two possible values of k.
(4 marks)
June 2006
6 The matrices \mathbf{P} and \mathbf{Q} are given by

$$
\mathbf{P}=\left[\begin{array}{rrr}
2 & 1 & 1 \\
1 & t & -2 \\
3 & 2 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{Q}=\left[\begin{array}{rrr}
1 & 1 & 1 \\
-7 & -1 & 5 \\
11 & -1 & -7
\end{array}\right]
$$

where t is a real constant.
(a) Find the value of t for which \mathbf{P} is singular.
(b) (i) Determine the matrix $\mathbf{R}=\mathbf{P Q}$, giving its elements in terms of t where appropriate.
(3 marks)
(ii) Find the value of t for which $\mathbf{R}=k \mathbf{I}$, for some integer k.
(2 marks)
(iii) Hence find the matrix \mathbf{Q}^{-1}.
(1 mark)
(c) In the case when $t=-3$, describe the geometrical transformation with matrix \mathbf{R}
(2 marks)
January 2007
$\mathbf{8}$ The matrix $\mathbf{P}=\left[\begin{array}{rrr}4 & -1 & 2 \\ 1 & 1 & 3 \\ -2 & 0 & a\end{array}\right]$, where a is constant.
(a) (i) Determine $\operatorname{det} \mathbf{P}$ as a linear expression in a.
(2 marks)
(ii) Evaluate $\operatorname{det} \mathbf{P}$ in the case when $a=3$.
(iii) Find the value of a for which \mathbf{P} is singular.
(b) The 3×3 matrix \mathbf{Q} is such that $\mathbf{P Q}=25 \mathbf{I}$.

Without finding \mathbf{Q} :

(i) write down an expression for \mathbf{P}^{-1} in terms of \mathbf{Q};
(ii) find the value of the constant k such that $(\mathbf{P Q})^{-1}=k \mathbf{I}$;
(iii) determine the numerical value of $\operatorname{det} \mathbf{Q}$ in the case when $a=3$.

6 The matrices \mathbf{A} and \mathbf{B} are given by

$$
\mathbf{A}=\left[\begin{array}{rr}
1 & 1 \\
-1 & 1 \\
1 & 1
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{lll}
1 & 0 & 1 \\
2 & 2 & t
\end{array}\right]
$$

(a) Find, in terms of t, the matrices:
(i) $\mathbf{A B}$;
(3 marks)
(ii) $\mathbf{B A}$.
(b) Explain why $\mathbf{A B}$ is singular for all values of t.
(c) In the case when $t=-2$, show that the transformation with matrix BA is the combination of an enlargement, E, and a second transformation, F. Find the scale factor of E and give a full geometrical description of F.

January 2008 (Only part a)
7 The non-singular matrix $\mathbf{M}=\left[\begin{array}{rrr}2 & -1 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & 2\end{array}\right]$.
(a) (i) Show that

$$
\mathbf{M}^{2}+2 \mathbf{I}=k \mathbf{M}
$$

for some integer k to be determined.
(ii) By multiplying the equation in part (a)(i) by \mathbf{M}^{-1}, show that

$$
\mathbf{M}^{-1}=a \mathbf{M}+b \mathbf{I}
$$

for constants a and b to be found.
(b) (i) Determine the characteristic equation of \mathbf{M} and show that \mathbf{M} has a repeated eigenvalue, 1 , and another eigenvalue, 2.
(ii) Give a full set of eigenvectors for each of these eigenvalues.
(iii) State the geometrical significance of each set of eigenvectors in relation to the transformation with matrix \mathbf{M}.

3 The matrix $\mathbf{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 3 \\ 4 & 3 & k\end{array}\right]$, where k is a constant.
Determine, in terms of k where appropriate:
(a) $\operatorname{det} \mathbf{A}$;
(b) \mathbf{A}^{-1}.

January 2009
2 The 2×2 matrices \mathbf{A} and \mathbf{B} are such that

$$
\mathbf{A B}=\left[\begin{array}{cc}
9 & 1 \\
7 & 13
\end{array}\right] \quad \text { and } \quad \mathbf{B A}=\left[\begin{array}{cc}
14 & 2 \\
1 & 8
\end{array}\right]
$$

Without finding \mathbf{A} and \mathbf{B} :
(a) find the value of $\operatorname{det} \mathbf{B}$, given that $\operatorname{det} \mathbf{A}=10$;
(b) determine the 2×2 matrices \mathbf{C} and \mathbf{D} given by

$$
\mathbf{C}=\left(\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}\right) \quad \text { and } \quad \mathbf{D}=\left(\mathbf{A}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}}\right)^{\mathrm{T}}
$$

where \mathbf{M}^{T} denotes the transpose of matrix \mathbf{M}.
June 2009
$\mathbf{1} \quad$ Let $\mathbf{P}=\left[\begin{array}{rrr}1 & 4 & 2 \\ -1 & 2 & 6\end{array}\right]$ and $\mathbf{Q}=\left[\begin{array}{rr}k & 1 \\ 2 & -1 \\ 3 & 1\end{array}\right]$, where k is a constant.
(a) Determine the product matrix $\mathbf{P Q}$, giving its elements in terms of k where appropriate. (3 marks)
(b) Find the value of k for which $\mathbf{P Q}$ is singular.
(2 marks)

January 2010

3 The matrices \mathbf{A} and \mathbf{B} are defined in terms of a real parameter t by

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & 2 & 1 \\
2 & t & 4 \\
3 & 2 & -1
\end{array}\right] \quad \text { and } \quad \mathbf{B}=\left[\begin{array}{rrr}
15 & -4 & -1 \\
-2 t & 4 & 2 \\
17 & -4 & -3
\end{array}\right]
$$

(a) Find, in terms of t, the matrix $\mathbf{A B}$ and deduce that there exists a value of t such that $\mathbf{A B}$ is a scalar multiple of the 3×3 identity matrix \mathbf{I}.
(b) For this value of t, deduce \mathbf{A}^{-1}.

2 Let $\mathbf{A}=\left[\begin{array}{ll}1 & x \\ 2 & 3\end{array}\right], \mathbf{B}=\left[\begin{array}{rr}1 & -1 \\ 2 & 2\end{array}\right]$ and $\mathbf{C}=\left[\begin{array}{ll}4-4 x & 8 \\ 8 x-4 & 4\end{array}\right]$.
(a) Find $\mathbf{A B}$ in terms of x.
(b) \quad Show that $\mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}=\mathbf{C}$ for some value of x.

January 2011
$4 \quad$ The non-singular matrix $\mathbf{X}=\left[\begin{array}{rrr}3 & 1 & -3 \\ 2 & 4 & 3 \\ -4 & 2 & -1\end{array}\right]$.
(a) (i) Show that $\mathbf{X}^{2}-\mathbf{X}=k \mathbf{I}$ for some integer k.
(ii) Hence show that $\mathbf{X}^{-1}=\frac{1}{20}(\mathbf{X}-\mathbf{I})$.
(b) The 3×3 matrix \mathbf{Y} has inverse $\mathbf{Y}^{-1}=\left[\begin{array}{rrr}60 & 0 & 0 \\ 0 & 0 & -10 \\ 0 & 20 & 0\end{array}\right]$.

Without finding \mathbf{Y}, determine the matrix $(\mathbf{X Y})^{-1}$.

1 The matrices \mathbf{A} and \mathbf{B} are given in terms of p by

$$
\mathbf{A}=\left[\begin{array}{rrr}
1 & p & 4 \\
-3 & 2 & 1 \\
2 & -1 & 1
\end{array}\right] \text { and } \mathbf{B}=\left[\begin{array}{rrr}
p & 1 & 5 \\
9 & p & -1 \\
2 & 0 & 1
\end{array}\right]
$$

(a) Find each of $\operatorname{det} \mathbf{A}$ and $\operatorname{det} \mathbf{B}$ in terms of p.
(b) Without finding $\mathbf{A B}$, determine all values of p for which $\mathbf{A B}$ is singular.
$4 \quad$ Let $\mathbf{X}=\left[\begin{array}{rr}3 & x \\ -1 & 7\end{array}\right]$.
(a) \quad Determine $\mathbf{X} \mathbf{X}^{\mathrm{T}}$.
(b) \quad Show that $\operatorname{Det}\left(\mathbf{X} \mathbf{X}^{\mathrm{T}}-\mathbf{X}^{\mathrm{T}} \mathbf{X}\right) \leqslant 0$ for all real values of x.
(c) Find the value of x for which the matrix $\left(\mathbf{X} \mathbf{X}^{\mathrm{T}}-\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)$ is singular.

7 The matrix $\mathbf{A}=\left[\begin{array}{lll}k & 1 & 2 \\ 2 & k & 1 \\ 1 & 2 & k\end{array}\right]$, where k is a real constant.
(a) (i) Show that there is a value of k for which

$$
\mathbf{A} \mathbf{A}^{\mathrm{T}}=m \mathbf{I}
$$

where m is a rational number to be determined and \mathbf{I} is the 3×3 identity matrix.
(ii) Deduce the inverse matrix, \mathbf{A}^{-1}, of \mathbf{A} for this value of k.
(b) (i) Find $\operatorname{det} \mathbf{A}$ in terms of k.
(ii) In the case when \mathbf{A} is singular, find the integer value of k and show that there are no other possible real values of k.
(iii) Find the value of k for which $\lambda=7$ is a real eigenvalue of \mathbf{A}.

4 The matrix \mathbf{A} is given by

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right]
$$

(a) Given that $\mathbf{A}^{2}=\left[\begin{array}{ccc}p & -2 & -4 \\ 5 & 6 & 4 \\ 10 & q & 9\end{array}\right]$, find the value of p and the value of $q . \quad$ (2 marks)
(b) Given that $\mathbf{A}^{3}-6 \mathbf{A}^{2}+11 \mathbf{A}-6 \mathbf{I}=\mathbf{0}$, prove that

$$
\mathbf{A}^{-1}=\frac{1}{6}\left(\mathbf{A}^{2}-6 \mathbf{A}+11 \mathbf{I}\right)
$$

(c) Given that $\mathbf{A}^{-1}=\frac{1}{6}\left[\begin{array}{ccc}r & -2 & 2 \\ -1 & 5 & -2 \\ -2 & s & 2\end{array}\right]$, find the value of r and the value of s.
(d) Hence, or otherwise, find the solution of the system of equations

$$
\begin{aligned}
x-z & =k \\
x+2 y+z & =5 \\
2 x+2 y+3 z & =7
\end{aligned}
$$

giving your answers in terms of k.
June 2013
$7 \quad$ The 3×3 matrices \mathbf{A} and \mathbf{B} satisfy

$$
\mathbf{A B}=\left[\begin{array}{lll}
k & 8 & 1 \\
1 & 1 & 0 \\
1 & 4 & 0
\end{array}\right] \text {, where } \mathbf{A}=\left[\begin{array}{rrr}
k & 6 & 8 \\
0 & 1 & 2 \\
-3 & 4 & 8
\end{array}\right]
$$

and k is a constant.
(a) Show that $\mathbf{A B}$ is non-singular.
(b) Find $(\mathbf{A B})^{-1}$ in terms of k.
(c) \quad Find \mathbf{B}^{-1}.

