FP4: Invariant Lines

Past Paper Questions 2006 - 2013

Name:

anuary	y 200	06	
5 T	The	transformation T maps (x, y) to (x', y') , where	
		$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$	
((a)	Describe the difference between an invariant line and a line of invariant point	nts of T. (1 mark)
((b)	Evaluate the determinant of the matrix $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$ and describe the geometric	ical
		significance of the result in relation to T.	(2 marks)
((c)	Show that T has a line of invariant points, and find a cartesian equation for t	his line. (2 marks)
((d)	(i) Find the image of the point $(x, -x + c)$ under T.	(2 marks)
		(ii) Hence show that all lines of the form $y = -x + c$, where c is an arbitr constant, are invariant lines of T.	ary (2 marks)
((e)	Describe the transformation T geometrically.	(3 marks
ne 2(
I T	he j	plane transformation T maps points (x, y) to points (x', y') such that	
		$\begin{bmatrix} x'\\ y' \end{bmatrix} = \mathbf{A} \begin{bmatrix} x\\ y \end{bmatrix} \text{ where } \mathbf{A} = \begin{bmatrix} 1 & 3\\ 0 & 1 \end{bmatrix}$	
((a)	(i) State the line of invariant points of T.	(1 mark
		(ii) Give a full geometrical description of T.	(2 marks
((b)	Find A^2 , and hence give a full geometrical description of the single plane transformation given by the matrix A^2 .	(3 marks)

 $\begin{bmatrix} -1 & 2 \\ -2 & 3 \end{bmatrix}$. Points (x, y) are mapped The transformation S is a shear with matrix $\mathbf{M} =$ 7 under S to image points (x', y') such that $\begin{bmatrix} x'\\v' \end{bmatrix} = \mathbf{M} \begin{bmatrix} x\\y \end{bmatrix}$ Find the equation of the line of invariant points of S. (2 marks) (a) Show that all lines of the form y = x + c, where c is a constant, are invariant lines (b) of S. (3 marks) Evaluate det **M**, and state the property of shears which is indicated by this result. (c) (2 marks)Calculate, to the nearest degree, the acute angle between the line y = -x and its image (d)under S. (3 marks) January 2008 A shear S is represented by the matrix $\mathbf{A} = \begin{bmatrix} p & q \\ -q & r \end{bmatrix}$, where p, q and r are constants. 3 By considering one of the geometrical properties of a shear, explain why $pr + q^2 = 1$. (a) (2 marks) Given that p = 4 and that the image of the point (-1, 2) under S is (2, -1), find: (b) (i) the value of q and the value of r; (3 marks) the equation of the line of invariant points of S. (ii) (3 marks) June 2009 4 Show that the system of equations (a) 3x - v + 3z = 114x + y - 5z = 175x - 4v + 14z = 16does not have a unique solution and is consistent. (You are not required to find any solutions to this system of equations.) (4 marks) A transformation T of three-dimensional space maps points (x, y, z) onto image points (b) (x', y', z') such that $\begin{bmatrix} x' \\ y' \\ z' \end{bmatrix} = \begin{bmatrix} x - y + 3z - 2 \\ 2x + 6y - 4z + 12 \\ 4x + 11y + 4z - 30 \end{bmatrix}$

Find the coordinates of the invariant point of T.

(8 marks)

8	The plane transformation T is represented by the matrix $\mathbf{M} = \begin{bmatrix} -3 & 8 \\ -1 & 3 \end{bmatrix}$.
(a)	The quadrilateral ABCD has image $A'B'C'D'$ under T.
	Evaluate det M and describe the geometrical significance of both its sign and its magnitude in relation to <i>ABCD</i> and $A'B'C'D'$. (3 marks)
(b)	The line $y = px$ is a line of invariant points of T, and the line $y = qx$ is an invariant line of T.
	Show that $p = \frac{1}{2}$ and determine the value of q . (5 marks)
(c) (i)	Find the 2 × 2 matrix R which represents a reflection in the line $y = \frac{1}{2}x$. (2 marks)
(ii)	Given that T is the composition of a shear, with matrix S, followed by a reflection in the line $y = \frac{1}{2}x$, determine the matrix S and describe the shear as fully as possible. (5 marks)
June 2013	
6	The plane transformation T is defined by
	$\mathbf{T}:\begin{bmatrix}x'\\y'\end{bmatrix} = \begin{bmatrix}4 & 3\\-3 & -2\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}$
(a)	$T: \begin{bmatrix} x'\\y' \end{bmatrix} = \begin{bmatrix} 4 & 3\\-3 & -2 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix}$ A shape has an area of 3 square units. Find the area of the shape after being transformed by T. (2 marks)
(a) (b) (i)	A shape has an area of 3 square units. Find the area of the shape after being