FP4:

Applications
 of Vectors

Past Paper Questions
2006-2013

Name:
$3 \quad$ (a) The plane Π has equation $\mathbf{r}=\left[\begin{array}{l}2 \\ 5 \\ 1\end{array}\right]+\lambda\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]+\mu\left[\begin{array}{r}4 \\ -1 \\ 0\end{array}\right]$.
(i) Find a vector which is perpendicular to both $\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right]$ and $\left[\begin{array}{r}4 \\ -1 \\ 0\end{array}\right]$.
(ii) Hence find an equation for Π in the form $\mathbf{r} . \mathbf{n}=d$.
(b) The line L has equation $\left(\mathbf{r}-\left[\begin{array}{r}-1 \\ 2 \\ 6\end{array}\right]\right) \times\left[\begin{array}{r}3 \\ 0 \\ -1\end{array}\right]=\mathbf{0}$.

Verify that $\mathbf{r}=\left[\begin{array}{l}2 \\ 2 \\ 5\end{array}\right]+t\left[\begin{array}{r}3 \\ 0 \\ -1\end{array}\right]$ is also an equation for L.
(c) Determine the position vector of the point of intersection of Π and L.

1 Two planes, Π_{1} and Π_{2}, have equations $\mathbf{r} \cdot\left[\begin{array}{l}4 \\ 5 \\ 3\end{array}\right]=0$ and $\mathbf{r} \cdot\left[\begin{array}{l}4 \\ 1 \\ 1\end{array}\right]=0$ respectively.
(a) Determine the cosine of the acute angle between Π_{1} and Π_{2}.
(b) (i) Find $\left[\begin{array}{l}4 \\ 5 \\ 3\end{array}\right] \times\left[\begin{array}{l}4 \\ 1 \\ 1\end{array}\right]$.
(ii) Find a vector equation for the line of intersection of Π_{1} and Π_{2}.

7 The diagram shows the parallelepiped $O A B C D E F G$.

Points A, B, C and D have position vectors

$$
\mathbf{a}=\left[\begin{array}{r}
4 \\
-1 \\
7
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
6 \\
1 \\
6
\end{array}\right], \mathbf{c}=\left[\begin{array}{r}
2 \\
2 \\
-1
\end{array}\right] \text { and } \mathbf{d}=\left[\begin{array}{r}
1 \\
3 \\
-2
\end{array}\right]
$$

respectively, relative to the origin O.
(a) Show that \mathbf{a}, \mathbf{b} and \mathbf{c} are linearly dependent.
(b) Determine the volume of the parallelepiped.
(c) Determine a vector equation for the plane $A B D G$:
(i) in the form $\mathbf{r}=\mathbf{u}+\lambda \mathbf{v}+\mu \mathbf{w}$;
(ii) in the form $\mathbf{r} \cdot \mathbf{n}=d$.
(d) Find cartesian equations for the line $O F$, and hence find the direction cosines of this line.
(4 marks)
January 2007
3 The points P, Q and R have position vectors \mathbf{p}, \mathbf{q} and \mathbf{r} respectively relative to an origin O, where

$$
\mathbf{p}=\left[\begin{array}{l}
1 \\
1 \\
4
\end{array}\right], \mathbf{q}=\left[\begin{array}{r}
-3 \\
4 \\
20
\end{array}\right] \text { and } \mathbf{r}=\left[\begin{array}{l}
9 \\
2 \\
4
\end{array}\right]
$$

(a) (i) Determine $\mathbf{p} \times \mathbf{q}$.
(ii) Find the area of triangle $O P Q$.
(b) Use the scalar triple product to show that \mathbf{p}, \mathbf{q} and \mathbf{r} are linearly dependent, and interpret this result geometrically.

5 (a) Find, to the nearest 0.1°, the acute angle between the planes with equations

$$
\begin{equation*}
\mathbf{r} \cdot(3 \mathbf{i}-4 \mathbf{j}+\mathbf{k})=2 \text { and } \mathbf{r} \cdot(2 \mathbf{i}+12 \mathbf{j}-\mathbf{k})=38 \tag{4marks}
\end{equation*}
$$

(b) Write down cartesian equations for these two planes.
(c) (i) Find, in the form $\frac{x-a}{l}=\frac{y-b}{m}=\frac{z-c}{n}$, cartesian equations for the line of intersection of the two planes.
(ii) Determine the direction cosines of this line.

June 2007
$5 \quad$ The line l has equation $\mathbf{r}=\left[\begin{array}{r}3 \\ 26 \\ -15\end{array}\right]+\lambda\left[\begin{array}{r}8 \\ -4 \\ 1\end{array}\right]$.
(a) Show that the point $P(-29,42,-19)$ lies on l.
(b) Find:
(i) the direction cosines of l;
(ii) the acute angle between l and the z-axis.
(c) The plane Π has cartesian equation $3 x-4 y+5 z=100$.
(i) Write down a normal vector to Π.
(ii) Find the acute angle between l and this normal vector.
(d) Find the position vector of the point Q where l meets Π.
(e) Determine the shortest distance from P to Π.
$6 \quad$ (a) The line l has equation $\mathbf{r}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]+\lambda\left[\begin{array}{l}3 \\ 2 \\ 6\end{array}\right]$.
(i) Write down a vector equation for l in the form $(\mathbf{r}-\mathbf{a}) \times \mathbf{b}=\mathbf{0}$.
(1 mark)
(ii) Write down cartesian equations for l.
(2 marks)
(iii) Find the direction cosines of l and explain, geometrically, what these represent.
(3 marks)
(b) The plane Π has equation $\mathbf{r}=\left[\begin{array}{l}7 \\ 5 \\ 1\end{array}\right]+\lambda\left[\begin{array}{l}4 \\ 3 \\ 2\end{array}\right]+\mu\left[\begin{array}{l}1 \\ 1 \\ 3\end{array}\right]$.
(i) Find an equation for Π in the form $\mathbf{r} \cdot \mathbf{n}=d$.
(ii) State the geometrical significance of the value of d in this case.
(c) Determine, to the nearest 0.1°, the angle between l and Π.

June 2008
4 Two planes have equations

$$
\mathbf{r} \cdot\left[\begin{array}{r}
5 \\
1 \\
-1
\end{array}\right]=12 \quad \text { and } \quad \mathbf{r} \cdot\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]=7
$$

(a) Find, to the nearest 0.1°, the acute angle between the two planes.
(b) (i) The point $P(0, a, b)$ lies in both planes. Find the value of a and the value of b. (3 marks)
(ii) By using a vector product, or otherwise, find a vector which is parallel to both planes.
(2 marks)
(iii) Find a vector equation for the line of intersection of the two planes.
(2 marks)
January 2009
1 The line l has equation $\mathbf{r}=(1+4 t) \mathbf{i}+(-2+12 t) \mathbf{j}+(1-3 t) \mathbf{k}$.
(a) Write down a direction vector for l.
(b) (i) Find direction cosines for l.
(ii) Explain the geometrical significance of the direction cosines in relation to l.
(1 mark)
(c) Write down a vector equation for l in the form $(\mathbf{r}-\mathbf{a}) \times \mathbf{b}=\mathbf{0}$.

6 The line L and the plane Π are, respectively, given by the equations

$$
\mathbf{r}=\left[\begin{array}{l}
2 \\
3 \\
5
\end{array}\right]+\lambda\left[\begin{array}{r}
1 \\
-1 \\
4
\end{array}\right] \quad \text { and } \quad \mathbf{r} \cdot\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=20
$$

(a) Determine the size of the acute angle between L and Π.
(b) The point P has coordinates $(10,-5,37)$.
(i) Show that P lies on L.
(ii) Find the coordinates of the point Q where L meets Π.
(iii) Deduce the distance $P Q$ and the shortest distance from P to Π.

June 2009
3 The plane Π has equation $\mathbf{r}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]+\lambda\left[\begin{array}{l}3 \\ 1 \\ 2\end{array}\right]+\mu\left[\begin{array}{r}4 \\ -1 \\ 1\end{array}\right]$.
(a) Find an equation for Π in the form $\mathbf{r} . \mathbf{n}=d$.
(b) Show that the line with equation $\mathbf{r}=\left[\begin{array}{l}7 \\ 1 \\ 4\end{array}\right]+t\left[\begin{array}{r}10 \\ 1 \\ 5\end{array}\right]$ does not intersect Π, and explain the geometrical significance of this result.

5 The points A, B, C and D have position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} respectively, relative to the origin O, where

$$
\mathbf{a}=\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right], \mathbf{b}=\left[\begin{array}{l}
3 \\
2 \\
5
\end{array}\right], \mathbf{c}=\left[\begin{array}{r}
1 \\
-1 \\
5
\end{array}\right] \text { and } \mathbf{d}=\left[\begin{array}{r}
5 \\
5 \\
11
\end{array}\right]
$$

(a) Using scalar triple products:
(i) show that $\overrightarrow{O A}, \overrightarrow{O B}$ and $\overrightarrow{O C}$ are coplanar;
(ii) find the volume of the parallelepiped defined by $A B, A C$ and $A D$.
(b) (i) Find the direction ratios of the line $B D$.
(ii) Deduce the direction cosines of the line $B D$.

2 The diagram shows the parallelepiped $A B C D E F G H$.

The position vectors of A, B, C, D and E are, respectively,

$$
\mathbf{a}=\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
5 \\
3 \\
1
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{r}
-3 \\
10 \\
4
\end{array}\right], \quad \mathbf{d}=\left[\begin{array}{r}
-7 \\
10 \\
7
\end{array}\right] \quad \text { and } \quad \mathbf{e}=\left[\begin{array}{r}
3 \\
4 \\
10
\end{array}\right]
$$

(a) Show that the area of $A B C D$ is 37 .
(b) Find the volume of $A B C D E F G H$.
(c) Deduce the distance between the planes $A B C D$ and $E F G H$.

6 (a) Find the value of p for which the planes with equations

$$
\mathbf{r} \cdot\left[\begin{array}{r}
6 \\
-3 \\
2
\end{array}\right]=42 \quad \text { and } \quad \mathbf{r} \cdot\left[\begin{array}{r}
4 p+1 \\
p-2 \\
1
\end{array}\right]=-7
$$

(i) are perpendicular;
(ii) are parallel.
(b) In the case when $p=4$:
(i) write down a cartesian equation for each plane;
(ii) find, in the form $\mathbf{r}=\mathbf{a}+\lambda \mathbf{d}$, an equation for l, the line of intersection of the planes.
(c) Determine a vector equation, in the form $\mathbf{r}=\mathbf{u}+\beta \mathbf{v}+\gamma \mathbf{w}$, for the plane which contains l and which passes through the point (30, 7, 30).

June 2010
3 The plane Π_{1} is perpendicular to the vector $9 \mathbf{i}-8 \mathbf{j}+72 \mathbf{k}$ and passes through the point $A(2,10,1)$.
(a) Find, in the form $\mathbf{r} . \mathbf{n}=d$, a vector equation for Π_{1}.
(b) Determine the exact value of the cosine of the acute angle between Π_{1} and the plane Π_{2} with equation $\mathbf{r} .(\mathbf{i}+\mathbf{j}+\mathbf{k})=11$.
$4 \quad$ The fixed points A and B and the variable point C have position vectors

$$
\mathbf{a}=\left[\begin{array}{c}
3 \\
-4 \\
1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
2 \\
1 \\
-3
\end{array}\right] \quad \text { and } \quad \mathbf{c}=\left[\begin{array}{c}
2-t \\
t \\
5
\end{array}\right]
$$

respectively, relative to the origin O, where t is a scalar parameter.
(a) Find an equation of the line $A B$ in the form $(\mathbf{r}-\mathbf{u}) \times \mathbf{v}=\mathbf{0}$.
(b) Determine $\mathbf{b} \times \mathbf{c}$ in terms of t.
(c) (i) Show that a. $(\mathbf{b} \times \mathbf{c})$ is constant for all values of t, and state the value of this constant.
(ii) Write down a geometrical conclusion that can be deduced from the answer to part (c)(i).
(1 mark)

6
The line L and the plane Π have vector equations

$$
\mathbf{r}=\left[\begin{array}{r}
7 \\
8 \\
50
\end{array}\right]+t\left[\begin{array}{r}
6 \\
2 \\
-9
\end{array}\right] \quad \text { and } \quad \mathbf{r}=\left[\begin{array}{r}
-2 \\
0 \\
-25
\end{array}\right]+\lambda\left[\begin{array}{l}
5 \\
3 \\
4
\end{array}\right]+\mu\left[\begin{array}{l}
1 \\
6 \\
2
\end{array}\right]
$$

respectively.
(a) (i) Find direction cosines for L.
(ii) Show that L is perpendicular to Π.
(b) For the system of equations

$$
\begin{aligned}
6 p+5 q+r & =9 \\
2 p+3 q+6 r & =8 \\
-9 p+4 q+2 r & =75
\end{aligned}
$$

form a pair of equations in p and q only, and hence find the unique solution of this system of equations.
(c) It is given that L meets Π at the point P.
(i) Demonstrate how the coordinates of P may be obtained from the system of equations in part (b).
(2 marks)
(ii) Hence determine the coordinates of P.
$5 \quad$ The planes Π_{1} and Π_{2} have vector equations $\mathbf{r} \cdot\left[\begin{array}{l}6 \\ 2 \\ 9\end{array}\right]=5$ and $\mathbf{r} \cdot\left[\begin{array}{r}10 \\ -1 \\ -11\end{array}\right]=4$ respectively.
(a) Write down cartesian equations for Π_{1} and Π_{2}.
(b) Find a vector equation for the line of intersection of Π_{1} and Π_{2}.
(c) The plane Π_{3} has cartesian equation $5 x+3 y+11 z=28$.

Use your answer to part (b) to find the coordinates of the point of intersection of Π_{1}, Π_{2} and Π_{3}.
(d) Determine a vector equation for the plane which passes through the point $(4,1,9)$ and which is perpendicular to both Π_{1} and Π_{2}.

6 The plane Π has equat
(a) Show that Q is in Π. $\left[\begin{array}{l}12 \\ 15 \\ 16\end{array}\right]=11$ and the point Q has coordinates $(1,1,-1)$.
(b) (i) Write down cartesian equations for the line l which passes through Q and is perpendicular to Π.
(ii) Deduce the direction cosines of l.
(c) The points M and N are on l, and each is 50 units from Π.

Find the coordinates of M and N.
(d) Given that the point $P(5,1,-4)$ is in Π, determine the area of triangle $P M N$.

The diagram shows the plane Π and the lines L and L^{\prime}. The plane Π and the line L have equations

$$
\mathbf{r} \cdot\left[\begin{array}{r}
3 \\
-2 \\
6
\end{array}\right]=37 \text { and } \mathbf{r}=\left[\begin{array}{r}
1 \\
2 \\
-7
\end{array}\right]+\lambda\left[\begin{array}{l}
2 \\
1 \\
2
\end{array}\right]
$$

The line L does not lie in Π, and intersects it at the point P.

(a) Determine the value of θ, the angle between L and Π, giving your answer to the nearest 0.1°.
(b) Find the coordinates of P.
(c) The line L^{\prime} lies in Π and is such that the angle between L and L^{\prime} is θ, the angle between L and Π.
(i) Find a vector which is parallel to Π and perpendicular to L.
(ii) Hence, or otherwise, find a vector equation for L^{\prime} in the form $\mathbf{r}=\mathbf{a}+\mu \mathbf{b}$.

6
The planes Π_{1} and Π_{2} have equations

$$
\mathbf{r} \cdot\left[\begin{array}{l}
2 \\
1 \\
7
\end{array}\right]=10 \quad \text { and } \quad \mathbf{r} \cdot\left[\begin{array}{r}
3 \\
1 \\
-4
\end{array}\right]=7
$$

respectively.
(a) Determine, to the nearest degree, the acute angle between Π_{1} and Π_{2}.
(b) By setting $z=t$, find cartesian equations for the line of intersection of Π_{1} and Π_{2} in the form

$$
\begin{equation*}
\frac{x-a}{l}=\frac{y-b}{m}=z=t \tag{6marks}
\end{equation*}
$$

(c) The line L, with equation $\mathbf{r}=\left[\begin{array}{r}20 \\ -1 \\ 7\end{array}\right]+\lambda\left[\begin{array}{l}1 \\ 9 \\ 4\end{array}\right]$, intersects Π_{1} at the point P and Π_{2} at the point Q.

Show that $P Q=k \sqrt{2}$, where k is an integer.
June 2012
2 A line has vector equation $\left(\mathbf{r}-\left[\begin{array}{r}3 \\ -2 \\ 6\end{array}\right]\right) \times\left[\begin{array}{r}4 \\ 7 \\ -4\end{array}\right]=\mathbf{0}$.
(a) Determine the direction cosines of this line.
(b) Explain the geometrical significance of the direction cosines in relation to the line.

The lines L_{1} and L_{2} have equations

$$
\mathbf{r}=\left[\begin{array}{r}
7 \\
-25 \\
9
\end{array}\right]+\alpha\left[\begin{array}{r}
3 \\
-4 \\
7
\end{array}\right] \quad \text { and } \quad \mathbf{r}=\left[\begin{array}{r}
7 \\
19 \\
-2
\end{array}\right]+\beta\left[\begin{array}{r}
2 \\
-2 \\
3
\end{array}\right]
$$

respectively.
(a) Determine a vector, \mathbf{n}, which is perpendicular to both lines.
(b) (i) The point A on L_{1} and the point B on L_{2} are such that $\overrightarrow{A B}=\lambda \mathbf{n}$ for some constant λ.

Show that

$$
\begin{aligned}
& 3 \alpha-2 \beta+2 \lambda=0 \\
& 4 \alpha-2 \beta-5 \lambda=-44 \\
& 7 \alpha-3 \beta+2 \lambda=-11
\end{aligned}
$$

(ii) Find the position vectors of A and B.
(iii) Deduce the shortest distance between L_{1} and L_{2}.
$8 \quad$ The point Q has position vector $\mathbf{q}=\left[\begin{array}{l}7 \\ 4 \\ 6\end{array}\right]$, the plane Π has equation $\mathbf{r} .\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]=36$,
and the line l has equation $\mathbf{r}=\left[\begin{array}{r}20 \\ -8 \\ 1\end{array}\right]+\mu\left[\begin{array}{r}-7 \\ 5 \\ 3\end{array}\right]$.
(a) \quad Show that Q lies in Π.
(b) Show also that l is parallel to Π.
(c) The diagram shows the point P, which lies on the normal to Π that passes through Q. The point R is the point on l which is closest to P, and $P Q=P R$.

The four vertices of a parallelogram $A B C D$ have coordinates

$$
A(1,0,2), B(3,-1,5), C(7,2,4) \text { and } D(5,3,1)
$$

(a) (i) Find $\overrightarrow{A B} \times \overrightarrow{A D}$.
(ii) Show that the area of the parallelogram is $p \sqrt{10}$, where p is an integer to be found.
(b) The diagonals $A C$ and $B D$ of the parallelogram meet at the point M. The line L passes through M and is perpendicular to the plane $A B C D$.

Find an equation for the line L, giving your answer in the form $(\mathbf{r}-\mathbf{u}) \times \mathbf{v}=\mathbf{0}$.
(4 marks)
(c) The plane Π is parallel to the plane $A B C D$ and passes through the point $Q(6,5,17)$.
(i) Find the coordinates of the point of intersection of the line L with the plane Π. (6 marks)
(ii) One face of a parallelepiped is $A B C D$ and the opposite face lies in the plane Π.

Find the volume of the parallelepiped.
(3 marks)

June 2013
1
The points A, B, C and D have position vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} respectively relative to the origin O, where

$$
\mathbf{a}=\left[\begin{array}{r}
1 \\
2 \\
-1
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
3 \\
4 \\
2
\end{array}\right], \quad \mathbf{c}=\left[\begin{array}{r}
-1 \\
0 \\
4
\end{array}\right] \quad \text { and } \quad \mathbf{d}=\left[\begin{array}{r}
4 \\
1 \\
-2
\end{array}\right]
$$

(a) Find $\overrightarrow{A B} \times \overrightarrow{A C}$.
(b) The points A, B and C lie in the plane Π. Find a Cartesian equation for Π.
(2 marks)
(c) Find the volume of the parallelepiped defined by $\overrightarrow{A B}, \overrightarrow{A C}$ and $\overrightarrow{A D}$.

A line and a plane have equations

$$
\frac{x-3}{p}=\frac{y-q}{3}=\frac{z-1}{-1}
$$

and

$$
\mathbf{r} \cdot\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right]=10
$$

respectively, where p and q are constants.
(a) Show that the line is not perpendicular to the plane.
(b) In the case where the line lies in the plane, find the values of p and q.
(c) In the case where the angle, θ, between the line and the plane satisfies $\sin \theta=\frac{1}{\sqrt{6}}$, and the line intersects the plane at $z=2$:
(i) find the value of p;
(ii) find the value of q.

