FP2: Roots of Polynomials

Past Paper Questions
2006-2013

Name:

2 The cubic equation

$$
x^{3}+p x^{2}+q x+r=0
$$

where p, q and r are real, has roots α, β and γ.
(a) Given that

$$
\alpha+\beta+\gamma=4 \quad \text { and } \quad \alpha^{2}+\beta^{2}+\gamma^{2}=20
$$

find the values of p and q. (5 marks)
(b) Given further that one root is $3+\mathrm{i}$, find the value of r.

June 2006
5 The cubic equation

$$
z^{3}-4 \mathrm{i} z^{2}+q z-(4-2 \mathrm{i})=0
$$

where q is a complex number, has roots α, β and γ.
(a) Write down the value of:
(i) $\alpha+\beta+\gamma$;
(ii) $\alpha \beta \gamma$.
(b) Given that $\alpha=\beta+\gamma$, show that:
(i) $\alpha=2 \mathrm{i}$;
(l mark)
(ii) $\beta \gamma=-(1+2 \mathrm{i})$; (2 marks)
(iii) $q=-(5+2 \mathrm{i})$. (3 marks)
(c) Show that β and γ are the roots of the equation

$$
z^{2}-2 \mathrm{i} z-(1+2 \mathrm{i})=0
$$

(d) Given that β is real, find β and γ.

3 The cubic equation

$$
z^{3}+2(1-\mathrm{i}) z^{2}+32(1+\mathrm{i})=0
$$

has roots α, β and γ.
(a) It is given that α is of the form $k i$, where k is real. By substituting $z=k i$ into the equation, show that $k=4$.
(b) Given that $\beta=-4$, find the value of γ.

June 2007
2 The cubic equation

$$
z^{3}+p z^{2}+6 z+q=0
$$

has roots α, β and γ.
(a) Write down the value of $\alpha \beta+\beta \gamma+\gamma \alpha$.
(b) Given that p and q are real and that $\alpha^{2}+\beta^{2}+\gamma^{2}=-12$:
(i) explain why the cubic equation has two non-real roots and one real root;
(ii) find the value of p.
(c) One root of the cubic equation is $-1+3 i$.

Find:
(i) the other two roots;
(ii) the value of q.

4 The cubic equation

$$
z^{3}+\mathrm{i} z^{2}+3 z-(1+\mathrm{i})=0
$$

has roots α, β and γ.
(a) Write down the value of:
(i) $\alpha+\beta+\gamma$;
(ii) $\alpha \beta+\beta \gamma+\gamma \alpha$;
(iii) $\alpha \beta \gamma$.
(b) Find the value of:
(i) $\alpha^{2}+\beta^{2}+\gamma^{2}$;
(ii) $\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}$;
(iii) $\alpha^{2} \beta^{2} \gamma^{2}$.
(c) Hence write down a cubic equation whose roots are α^{2}, β^{2} and γ^{2}.

June 2008
3 The cubic equation

$$
z^{3}+q z+(18-12 \mathrm{i})=0
$$

where q is a complex number, has roots α, β and γ.
(a) Write down the value of:
(i) $\alpha \beta \gamma$;
(ii) $\alpha+\beta+\gamma$. (1 mark)
(b) Given that $\beta+\gamma=2$, find the value of:
(i) α; (1 mark)
(ii) $\beta \gamma$; (2 marks)
(iii) q.
(3 marks)
(c) Given that β is of the form $k i$, where k is real, find β and γ.

4 It is given that α, β and γ satisfy the equations

$$
\begin{aligned}
& \alpha+\beta+\gamma=1 \\
& \alpha^{2}+\beta^{2}+\gamma^{2}=-5 \\
& \alpha^{3}+\beta^{3}+\gamma^{3}=-23
\end{aligned}
$$

(a) Show that $\alpha \beta+\beta \gamma+\gamma \alpha=3$.
(b) Use the identity

$$
(\alpha+\beta+\gamma)\left(\alpha^{2}+\beta^{2}+\gamma^{2}-\alpha \beta-\beta \gamma-\gamma \alpha\right)=\alpha^{3}+\beta^{3}+\gamma^{3}-3 \alpha \beta \gamma
$$

to find the value of $\alpha \beta \gamma$.
(c) Write down a cubic equation, with integer coefficients, whose roots are α, β and γ.
(d) Explain why this cubic equation has two non-real roots.
(e) Given that α is real, find the values of α, β and γ.

June 2009
3 The cubic equation

$$
z^{3}+p z^{2}+25 z+q=0
$$

where p and q are real, has a root $\alpha=2-3 \mathrm{i}$.
(a) Write down another non-real root, β, of this equation.
(b) Find:
(i) the value of $\alpha \beta$;
(ii) the third root, γ, of the equation;
(iii) the values of p and q.

3 The cubic equation

$$
2 z^{3}+p z^{2}+q z+16=0
$$

where p and q are real, has roots α, β and γ.
It is given that $\alpha=2+2 \sqrt{3} \mathrm{i}$.
(a) (i) Write down another root, β, of the equation.
(ii) Find the third root, γ.
(iii) Find the values of p and q.

June 2010
4 The roots of the cubic equation

$$
z^{3}-2 z^{2}+p z+10=0
$$

are α, β and γ.
It is given that $\alpha^{3}+\beta^{3}+\gamma^{3}=-4$.
(a) Write down the value of $\alpha+\beta+\gamma$.
(b) (i) Explain why $\alpha^{3}-2 \alpha^{2}+p \alpha+10=0$. (1 mark)
(ii) Hence show that

$$
\alpha^{2}+\beta^{2}+\gamma^{2}=p+13
$$

(iii) Deduce that $p=-3$.
(c) (i) Find the real root α of the cubic equation $z^{3}-2 z^{2}-3 z+10=0$.
(ii) Find the values of β and γ.

3 (a) Show that $(1+i)^{3}=2 \mathrm{i}-2$.
(b) The cubic equation

$$
z^{3}-(5+\mathrm{i}) z^{2}+(9+4 \mathrm{i}) z+k(1+\mathrm{i})=0
$$

where k is a real constant, has roots α, β and γ.
It is given that $\alpha=1+\mathrm{i}$.
(i) Find the value of k.
(ii) Show that $\beta+\gamma=4$.
(iii) Find the values of β and γ.

4 The cubic equation

$$
z^{3}-2 z^{2}+k=0 \quad(k \neq 0)
$$

has roots α, β and γ.
(a) (i) Write down the values of $\alpha+\beta+\gamma$ and $\alpha \beta+\beta \gamma+\gamma \alpha$.
(ii) Show that $\alpha^{2}+\beta^{2}+\gamma^{2}=4$.
(iii) Explain why $\alpha^{3}-2 \alpha^{2}+k=0$.
(iv) Show that $\alpha^{3}+\beta^{3}+\gamma^{3}=8-3 k$.
(b) Given that $\alpha^{4}+\beta^{4}+\gamma^{4}=0$:
(i) show that $k=2$;
(ii) find the value of $\alpha^{5}+\beta^{5}+\gamma^{5}$.

The numbers α, β and γ satisfy the equations

$$
\begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =-10-12 \mathrm{i} \\
\alpha \beta+\beta \gamma+\gamma \alpha & =5+6 \mathrm{i}
\end{aligned}
$$

(a) Show that $\alpha+\beta+\gamma=0$.
(b) The numbers α, β and γ are also the roots of the equation

$$
z^{3}+p z^{2}+q z+r=0
$$

Write down the value of p and the value of q.
(c) It is also given that $\alpha=3 \mathrm{i}$.
(i) Find the value of r.
(ii) Show that β and γ are the roots of the equation

$$
z^{2}+3 i z-4+6 i=0
$$

(iii) Given that β is real, find the values of β and γ.

June 2012
4 The cubic equation

$$
z^{3}+p z+q=0
$$

has roots α, β and γ.
(a) (i) Write down the value of $\alpha+\beta+\gamma$.
(ii) Express $\alpha \beta \gamma$ in terms of q.
(b) Show that

$$
\alpha^{3}+\beta^{3}+\gamma^{3}=3 \alpha \beta \gamma
$$

(c) Given that $\alpha=4+7 i$ and that p and q are real, find the values of:
(i) β and γ;
(ii) p and q.
(d) Find a cubic equation with integer coefficients which has roots $\frac{1}{\alpha}, \frac{1}{\beta}$ and $\frac{1}{\gamma}$.

4 The roots of the equation

$$
z^{3}-5 z^{2}+k z-4=0
$$

are α, β and γ.
(a) (i) Write down the value of $\alpha+\beta+\gamma$ and the value of $\alpha \beta \gamma$.
(ii) Hence find the value of $\alpha^{2} \beta \gamma+\alpha \beta^{2} \gamma+\alpha \beta \gamma^{2}$.
(b) The value of $\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}$ is -4 .
(i) Explain why α, β and γ cannot all be real.
(ii) By considering $(\alpha \beta+\beta \gamma+\gamma \alpha)^{2}$, find the possible values of k.

5 The cubic equation

$$
z^{3}+p z^{2}+q z+37-36 \mathrm{i}=0
$$

where p and q are constants, has three complex roots, α, β and γ.
It is given that $\beta=-2+3 \mathrm{i}$ and $\gamma=1+2 \mathrm{i}$.
(a) (i) Write down the value of $\alpha \beta \gamma$.
(ii) Hence show that $(8+\mathrm{i}) \alpha=37-36 \mathrm{i}$.
(iii) Hence find α, giving your answer in the form $m+n \mathrm{i}$, where m and n are integers.
(b) Find the value of p.
(c) Find the value of the complex number q.

