FP2: Roots of Polynomials

Past Paper Questions 2006 - 2013

Name:

2 The cubic equation

$$x^3 + px^2 + qx + r = 0$$

where p, q and r are real, has roots α , β and γ .

(a) Given that

$$\alpha + \beta + \gamma = 4$$
 and $\alpha^2 + \beta^2 + \gamma^2 = 20$

find the values of p and q.

(5 marks)

(b) Given further that one root is 3 + i, find the value of r.

(5 marks)

June 2006

5 The cubic equation

$$z^3 - 4iz^2 + qz - (4 - 2i) = 0$$

where q is a complex number, has roots α , β and γ .

(a) Write down the value of:

(i)
$$\alpha + \beta + \gamma$$
; (1 mark)

(ii)
$$\alpha\beta\gamma$$
. (1 mark)

(ii) $\alpha\beta\gamma$. (b) Given that $\alpha = \beta + \gamma$, show that:

(i)
$$\alpha = 2i$$
; (1 mark)

(ii)
$$\beta \gamma = -(1+2i);$$
 (2 marks)

(iii)
$$q = -(5+2i)$$
. (3 marks)

(c) Show that β and γ are the roots of the equation

$$z^2 - 2iz - (1 + 2i) = 0$$
 (2 marks)

(d) Given that β is real, find β and γ . (3 marks)

February 2007

3 The cubic equation

$$z^3 + 2(1 - i)z^2 + 32(1 + i) = 0$$

has roots α , β and γ .

- (a) It is given that α is of the form ki, where k is real. By substituting z = ki into the equation, show that k = 4.
- (b) Given that $\beta = -4$, find the value of γ .

(2 marks)

June 2007

2 The cubic equation

$$z^3 + pz^2 + 6z + q = 0$$

has roots α , β and γ .

(a) Write down the value of $\alpha\beta + \beta\gamma + \gamma\alpha$.

(1 mark)

- (b) Given that p and q are real and that $\alpha^2 + \beta^2 + \gamma^2 = -12$:
 - (i) explain why the cubic equation has two non-real roots and one real root;

(2 marks)

(ii) find the value of p.

(4 marks)

(c) One root of the cubic equation is -1 + 3i.

Find:

(i) the other two roots;

(3 marks)

(ii) the value of q.

(2 marks)

4 The cubic equation

$$z^3 + iz^2 + 3z - (1+i) = 0$$

has roots α , β and γ .

(a) Write down the value of:

(i)
$$\alpha + \beta + \gamma$$
; (1 mark)

(ii)
$$\alpha\beta + \beta\gamma + \gamma\alpha$$
; (1 mark)

(iii)
$$\alpha\beta\gamma$$
. (1 mark)

(b) Find the value of:

(i)
$$\alpha^2 + \beta^2 + \gamma^2$$
; (3 marks)

(ii)
$$\alpha^2\beta^2 + \beta^2\gamma^2 + \gamma^2\alpha^2$$
; (4 marks)

(iii)
$$\alpha^2 \beta^2 \gamma^2$$
. (2 marks)

(c) Hence write down a cubic equation whose roots are α^2 , β^2 and γ^2 . (2 marks)

June 2008

3 The cubic equation

$$z^3 + qz + (18 - 12i) = 0$$

where q is a complex number, has roots α , β and γ .

(a) Write down the value of:

(i)
$$\alpha\beta\gamma$$
; (1 mark)

(ii)
$$\alpha + \beta + \gamma$$
. (1 mark)

(b) Given that $\beta + \gamma = 2$, find the value of:

(i)
$$\alpha$$
; (1 mark)

(ii)
$$\beta \gamma$$
; (2 marks)

(c) Given that
$$\beta$$
 is of the form ki , where k is real, find β and γ . (4 marks)

4 It is given that α , β and γ satisfy the equations

$$\alpha + \beta + \gamma = 1$$

$$\alpha^{2} + \beta^{2} + \gamma^{2} = -5$$

$$\alpha^{3} + \beta^{3} + \gamma^{3} = -23$$

(a) Show that $\alpha\beta + \beta\gamma + \gamma\alpha = 3$.

(3 marks)

(b) Use the identity

$$(\alpha + \beta + \gamma)(\alpha^2 + \beta^2 + \gamma^2 - \alpha\beta - \beta\gamma - \gamma\alpha) = \alpha^3 + \beta^3 + \gamma^3 - 3\alpha\beta\gamma$$

to find the value of $\alpha\beta\gamma$.

(2 marks)

(c) Write down a cubic equation, with integer coefficients, whose roots are α , β and γ .

(2 marks)

(d) Explain why this cubic equation has two non-real roots.

(2 marks)

(e) Given that α is real, find the values of α , β and γ .

(4 marks)

June 2009

3 The cubic equation

$$z^3 + pz^2 + 25z + q = 0$$

where p and q are real, has a root $\alpha = 2 - 3i$.

(a) Write down another non-real root, β , of this equation.

(1 mark)

- (b) Find:
 - (i) the value of $\alpha\beta$;

(1 mark)

(ii) the third root, γ , of the equation;

(3 marks)

(iii) the values of p and q.

(3 marks)

January 2010

3 The cubic equation

$$2z^3 + pz^2 + qz + 16 = 0$$

where p and q are real, has roots α , β and γ .

It is given that $\alpha = 2 + 2\sqrt{3}i$.

(a) (i) Write down another root,
$$\beta$$
, of the equation.

(1 mark)

(ii) Find the third root,
$$\gamma$$
.

(3 marks)

(iii) Find the values of
$$p$$
 and q .

(3 marks)

June 2010

4 The roots of the cubic equation

$$z^3 - 2z^2 + pz + 10 = 0$$

are α , β and γ .

It is given that $\alpha^3 + \beta^3 + \gamma^3 = -4$.

(a) Write down the value of
$$\alpha + \beta + \gamma$$
.

(1 mark)

(b) (i) Explain why
$$\alpha^3 - 2\alpha^2 + p\alpha + 10 = 0$$
.

(1 mark)

(ii) Hence show that

$$\alpha^2 + \beta^2 + \gamma^2 = p + 13 \tag{4 marks}$$

(iii) Deduce that
$$p = -3$$
.

(2 marks)

(c) (i) Find the real root
$$\alpha$$
 of the cubic equation $z^3 - 2z^2 - 3z + 10 = 0$.

(2 marks)

(ii) Find the values of
$$\beta$$
 and γ .

(3 marks)

3 (a) Show that $(1+i)^3 = 2i - 2$.

(2 marks)

(b) The cubic equation

$$z^{3} - (5+i)z^{2} + (9+4i)z + k(1+i) = 0$$

where k is a real constant, has roots α , β and γ .

It is given that $\alpha = 1 + i$.

(i) Find the value of k.

(3 marks)

(ii) Show that $\beta + \gamma = 4$.

(1 mark)

(iii) Find the values of β and γ .

(5 marks)

June 2011

4 The cubic equation

$$z^3 - 2z^2 + k = 0 \qquad (k \neq 0)$$

has roots α , β and γ .

(a) (i) Write down the values of $\alpha + \beta + \gamma$ and $\alpha\beta + \beta\gamma + \gamma\alpha$. (2 marks)

(ii) Show that $\alpha^2 + \beta^2 + \gamma^2 = 4$. (2 marks)

(iii) Explain why $\alpha^3 - 2\alpha^2 + k = 0$. (1 mark)

(iv) Show that $\alpha^3 + \beta^3 + \gamma^3 = 8 - 3k$. (2 marks)

(b) Given that $\alpha^4 + \beta^4 + \gamma^4 = 0$:

(i) show that k = 2; (4 marks)

(ii) find the value of $\alpha^5 + \beta^5 + \gamma^5$. (3 marks)

7 The numbers α , β and γ satisfy the equations

$$\alpha^{2} + \beta^{2} + \gamma^{2} = -10 - 12i$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = 5 + 6i$$

(a) Show that $\alpha + \beta + \gamma = 0$. (2 marks)

(b) The numbers α , β and γ are also the roots of the equation

$$z^3 + pz^2 + qz + r = 0$$

Write down the value of p and the value of q.

(2 marks)

(c) It is also given that $\alpha = 3i$.

(i) Find the value of r. (3 marks)

(ii) Show that β and γ are the roots of the equation

$$z^2 + 3iz - 4 + 6i = 0 (2 marks)$$

(iii) Given that β is real, find the values of β and γ . (3 marks)

June 2012

4 The cubic equation

$$z^3 + pz + q = 0$$

has roots α , β and γ .

(a) (i) Write down the value of $\alpha + \beta + \gamma$. (1 mark)

(ii) Express $\alpha \beta \gamma$ in terms of q. (1 mark)

(b) Show that

$$\alpha^3 + \beta^3 + \gamma^3 = 3\alpha\beta\gamma \tag{3 marks}$$

(c) Given that $\alpha = 4 + 7i$ and that p and q are real, find the values of:

(i) β and γ ; (2 marks)

(ii) p and q. (3 marks)

(d) Find a cubic equation with integer coefficients which has roots $\frac{1}{\alpha}$, $\frac{1}{\beta}$ and $\frac{1}{\gamma}$.

4 The roots of the equation

$$z^3 - 5z^2 + kz - 4 = 0$$

are α , β and γ .

(a) (i) Write down the value of $\alpha + \beta + \gamma$ and the value of $\alpha\beta\gamma$. (2 marks)

(ii) Hence find the value of $\alpha^2 \beta \gamma + \alpha \beta^2 \gamma + \alpha \beta \gamma^2$. (2 marks)

(b) The value of $\alpha^2 \beta^2 + \beta^2 \gamma^2 + \gamma^2 \alpha^2$ is -4.

(i) Explain why α , β and γ cannot all be real. (1 mark)

(ii) By considering $(\alpha\beta + \beta\gamma + \gamma\alpha)^2$, find the possible values of k. (4 marks)

June 2013

5 The cubic equation

$$z^3 + pz^2 + qz + 37 - 36i = 0$$

where p and q are constants, has three complex roots, α , β and γ .

It is given that $\beta = -2 + 3i$ and $\gamma = 1 + 2i$.

(a) (i) Write down the value of $\alpha \beta \gamma$.

(1 mark)

(ii) Hence show that $(8+i)\alpha = 37-36i$.

(2 marks)

(iii) Hence find α , giving your answer in the form m + ni, where m and n are integers.

(3 marks)

(b) Find the value of p.

(1 mark)

(c) Find the value of the complex number q.

(2 marks)