FP4: Roots of Quadratics

Past Paper Questions
2006-2013

Name:

1 The quadratic equation

$$
3 x^{2}-6 x+2=0
$$

has roots α and β.
(a) Write down the numerical values of $\alpha+\beta$ and $\alpha \beta$.
(b) (i) Expand $(\alpha+\beta)^{3}$.
(ii) Show that $\alpha^{3}+\beta^{3}=4$.
(c) Find a quadratic equation with roots α^{3} and β^{3}, giving your answer in the form $p x^{2}+q x+r=0$, where p, q and r are integers.

January 2007

3 The quadratic equation

$$
2 x^{2}+4 x+3=0
$$

has roots α and β.
(a) Write down the values of $\alpha+\beta$ and $\alpha \beta$.
(b) Show that $\alpha^{2}+\beta^{2}=1$.
(c) Find the value of $\alpha^{4}+\beta^{4}$.

June 2007
4 The quadratic equation

$$
2 x^{2}-x+4=0
$$

has roots α and β.
(a) Write down the values of $\alpha+\beta$ and $\alpha \beta$.
(b) Show that $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{1}{4}$.
(2 marks)
(c) Find a quadratic equation with integer coefficients such that the roots of the equation are

$$
\frac{4}{\alpha} \text { and } \frac{4}{\beta}
$$

8 (a) (i) It is given that α and β are the roots of the equation

$$
x^{2}-2 x+4=0
$$

Without solving this equation, show that α^{3} and β^{3} are the roots of the equation

$$
x^{2}+16 x+64=0
$$

(ii) State, giving a reason, whether the roots of the equation

$$
x^{2}+16 x+64=0
$$

are real and equal, real and distinct, or non-real.
(b) Solve the equation

$$
x^{2}-2 x+4=0
$$

(c) Use your answers to parts (a) and (b) to show that

$$
\begin{equation*}
(1+i \sqrt{3})^{3}=(1-i \sqrt{3})^{3} \tag{2marks}
\end{equation*}
$$

June 2008
1 The equation

$$
x^{2}+x+5=0
$$

has roots α and β.
(a) Write down the values of $\alpha+\beta$ and $\alpha \beta$.
(b) Find the value of $\alpha^{2}+\beta^{2}$.
(c) Show that $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=-\frac{9}{5}$.
(d) Find a quadratic equation, with integer coefficients, which has roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.

1 The equation

$$
2 x^{2}+x-8=0
$$

has roots α and β.
(a) Write down the values of $\alpha+\beta$ and $\alpha \beta$.
(b) Find the value of $\alpha^{2}+\beta^{2}$.
(c) Find a quadratic equation which has roots $4 \alpha^{2}$ and $4 \beta^{2}$. Give your answer in the form $x^{2}+p x+q=0$, where p and q are integers.

January 2010
1 The quadratic equation

$$
3 x^{2}-6 x+1=0
$$

has roots α and β.
(a) Write down the values of $\alpha+\beta$ and $\alpha \beta$.
(b) Show that $\alpha^{3}+\beta^{3}=6$.
(c) Find a quadratic equation, with integer coefficients, which has roots $\frac{\alpha^{2}}{\beta}$ and $\frac{\beta^{2}}{\alpha}$.

June 2010
8 The quadratic equation

$$
x^{2}-4 x+10=0
$$

has roots α and β.
(a) Write down the values of $\alpha+\beta$ and $\alpha \beta$.
(b) Show that $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{2}{5}$.
(c) Find a quadratic equation, with integer coefficients, which has roots $\alpha+\frac{2}{\beta}$ and $\beta+\frac{2}{\alpha}$.

1 The quadratic equation $x^{2}-6 x+18=0$ has roots α and β.
(a) Write down the values of $\alpha+\beta$ and $\alpha \beta$.
(b) Find a quadratic equation, with integer coefficients, which has roots α^{2} and β^{2}. (4 marks)
(c) Hence find the values of α^{2} and β^{2}.

June 2011
2 The equation

$$
4 x^{2}+6 x+3=0
$$

has roots α and β.
(a) Write down the values of $\alpha+\beta$ and $\alpha \beta$.
(b) Show that $\alpha^{2}+\beta^{2}=\frac{3}{4}$.
(c) Find an equation, with integer coefficients, which has roots

$$
\begin{equation*}
3 \alpha-\beta \text { and } 3 \beta-\alpha \tag{5marks}
\end{equation*}
$$

January 2012
1 The quadratic equation

$$
2 x^{2}+7 x+8=0
$$

has roots α and β.
(a) Write down the values of $\alpha+\beta$ and $\alpha \beta$.
(b) Show that $\alpha^{2}+\beta^{2}=\frac{17}{4}$.
(c) Find a quadratic equation, with integer coefficients, which has roots

$$
\frac{1}{\alpha^{2}} \text { and } \frac{1}{\beta^{2}}
$$

1 The quadratic equation

$$
5 x^{2}-7 x+1=0
$$

has roots α and β.
(a) Write down the values of $\alpha+\beta$ and $\alpha \beta$.
(b) Show that $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}=\frac{39}{5}$.
(c) Find a quadratic equation, with integer coefficients, which has roots

$$
\alpha+\frac{1}{\alpha} \quad \text { and } \quad \beta+\frac{1}{\beta}
$$

January 2013
5 The roots of the quadratic equation

$$
x^{2}+2 x-5=0
$$

are α and β.
(a) Write down the value of $\alpha+\beta$ and the value of $\alpha \beta$.
(b) Calculate the value of $\alpha^{2}+\beta^{2}$.
(c) Find a quadratic equation which has roots $\alpha^{3} \beta+1$ and $\alpha \beta^{3}+1$.

June 2013
6 The equation

$$
2 x^{2}+3 x-6=0
$$

has roots α and β.
(a) Write down the value of $\alpha+\beta$ and the value of $\alpha \beta$.
(b) Hence show that $\alpha^{3}+\beta^{3}=-\frac{135}{8}$.
(c) Find a quadratic equation, with integer coefficients, whose roots are $\alpha+\frac{\alpha}{\beta^{2}}$ and $\beta+\frac{\beta}{\alpha^{2}}$.

