Core 1 -Calculus

Past Paper Questions 2006 - 2013

Name:

The volume, $V m^3$, of water in a tank at time t seconds is given by 7 $V = \frac{1}{3}t^6 - 2t^4 + 3t^2$, for $t \ge 0$ (a) Find: (i) $\frac{\mathrm{d}V}{\mathrm{d}t}$; (3 marks) (ii) $\frac{\mathrm{d}^2 V}{\mathrm{d}t^2}$. (2 marks) (b) Find the rate of change of the volume of water in the tank, in $m^3 s^{-1}$, when t = 2. (2 marks) Verify that V has a stationary value when t = 1. (c) (i) (2 marks) (ii) Determine whether this is a maximum or minimum value. (2 marks) The diagram shows the curve with equation $y = 3x^2 - x^3$ and the line L. 8 y С

The points *A* and *B* have coordinates (-1, 0) and (2, 0) respectively. The curve touches the *x*-axis at the origin *O* and crosses the *x*-axis at the point (3, 0). The line *L* cuts the curve at the point *D* where x = -1 and touches the curve at *C* where x = 2.

(a) Find the area of the rectangle *ABCD*. (2 marks)

(b) (i) Find
$$\int (3x^2 - x^3) dx$$
. (3 marks)

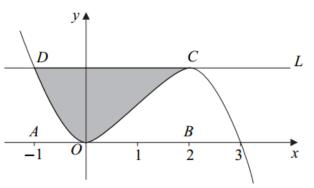
(ii) Hence find the area of the shaded region bounded by the curve and the line L. (4 marks)

(c) For the curve above with equation
$$y = 3x^2 - x^3$$
:

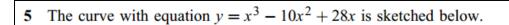
(i) find
$$\frac{dy}{dx}$$
; (2 marks)

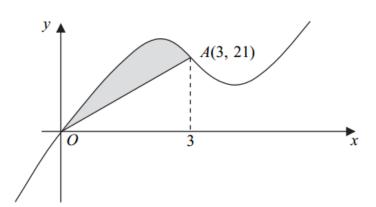
(ii) hence find an equation of the tangent at the point on the curve where x = 1; (3 marks)

- (iii) show that y is decreasing when $x^2 2x > 0$. (2 marks)
- (d) Solve the inequality $x^2 2x > 0$. (2 marks)



3 A curve has equation y = 7 - 2x⁵.
(a) Find dy/dx. (2 marks)
(b) Find an equation for the tangent to the curve at the point where x = 1. (3 marks)
(c) Determine whether y is increasing or decreasing when x = -2. (2 marks)





The curve crosses the x-axis at the origin O and the point A(3, 21) lies on the curve.

(a) (i) Find
$$\frac{dy}{dx}$$
. (3 marks)

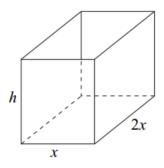
(ii) Hence show that the curve has a stationary point when x = 2 and find the *x*-coordinate of the other stationary point. (4 marks)

(b) (i) Find
$$\int (x^3 - 10x^2 + 28x) dx$$
. (3 marks)

(ii) Hence show that
$$\int_0^3 (x^3 - 10x^2 + 28x) dx = 56\frac{1}{4}$$
. (2 marks)

(iii) Hence determine the area of the shaded region bounded by the curve and the line *OA*. (3 marks)

5 The diagram shows an **open-topped** water tank with a horizontal rectangular base and four vertical faces. The base has width x metres and length 2x metres, and the height of the tank is h metres.



The combined internal surface area of the base and four vertical faces is $54\,m^2$.

- (a) (i) Show that $x^2 + 3xh = 27$. (2 marks)
 - (ii) Hence express h in terms of x.
 - (iii) Hence show that the volume of water, $V m^3$, that the tank can hold when full is given by

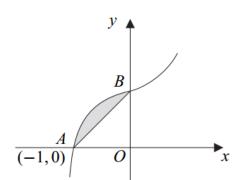
$$V = 18x - \frac{2x^3}{3} \tag{1 mark}$$

(1 mark)

(b) (i) Find
$$\frac{\mathrm{d}V}{\mathrm{d}x}$$
. (2 marks)

- (ii) Verify that V has a stationary value when x = 3. (2 marks)
- (c) Find $\frac{d^2 V}{dx^2}$ and hence determine whether V has a maximum value or a minimum value when x = 3.

6 The curve with equation $y = 3x^5 + 2x + 5$ is sketched below.



The curve cuts the x-axis at the point A(-1,0) and cuts the y-axis at the point B.

(a) (i) State the coordinates of the point *B* and hence find the area of the triangle *AOB*, where *O* is the origin. (3 marks)

(ii) Find
$$\int (3x^5 + 2x + 5) \, dx$$
. (3 marks)

(iii) Hence find the area of the shaded region bounded by the curve and the line AB. (4 marks)

(b) (i) Find the gradient of the curve with equation
$$y = 3x^5 + 2x + 5$$
 at the point $A(-1, 0)$. (3 marks)

(ii) Hence find an equation of the tangent to the curve at the point A. (1 mark)

June 2007

4 A model helicopter takes off from a point O at time t = 0 and moves vertically so that its height, y cm, above O after time t seconds is given by

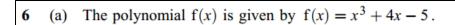
$$y = \frac{1}{4}t^4 - 26t^2 + 96t$$
, $0 \le t \le 4$

(a) Find:

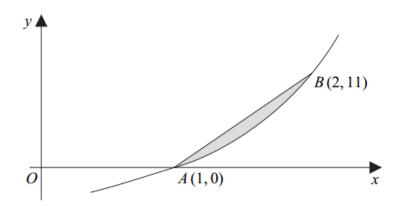
(i)
$$\frac{\mathrm{d}y}{\mathrm{d}t}$$
; (3 marks)

(ii)
$$\frac{\mathrm{d}^2 y}{\mathrm{d}t^2}$$
. (2 marks)

- (b) Verify that y has a stationary value when t = 2 and determine whether this stationary value is a maximum value or a minimum value. (4 marks)
- (c) Find the rate of change of y with respect to t when t = 1. (2 marks)
- (d) Determine whether the height of the helicopter above O is increasing or decreasing at the instant when t = 3. (2 marks)



- (i) Use the Factor Theorem to show that x 1 is a factor of f(x). (2 marks)
- (ii) Express f(x) in the form $(x-1)(x^2 + px + q)$, where p and q are integers. (2 marks)
- (iii) Hence show that the equation f(x) = 0 has exactly one real root and state its value. (3 marks)
- (b) The curve with equation $y = x^3 + 4x 5$ is sketched below.



The curve cuts the x-axis at the point A(1,0) and the point B(2,11) lies on the curve.

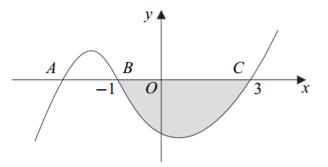
(i) Find
$$\int (x^3 + 4x - 5) dx$$
. (3 marks)

(ii) Hence find the area of the shaded region bounded by the curve and the line AB. (4 marks)

January 2008

The curve with equation $y = x^4 - 32x + 5$ has a single stationary point, M. 2 (a) Find $\frac{dy}{dx}$. (3 marks) Hence find the x-coordinate of M. (3 marks) (b) (i) Find $\frac{d^2y}{dx^2}$. (c) (1 mark) Hence, or otherwise, determine whether M is a maximum or a minimum point. (ii) (2 marks) Determine whether the curve is increasing or decreasing at the point on the curve (d) where x = 0. (2 marks) 6 (a) The polynomial p(x) is given by $p(x) = x^3 - 7x - 6$.

- (i) Use the Factor Theorem to show that x + 1 is a factor of p(x). (2 marks)
- (ii) Express $p(x) = x^3 7x 6$ as the product of three linear factors. (3 marks)
- (b) The curve with equation $y = x^3 7x 6$ is sketched below.



The curve cuts the x-axis at the point A and the points B(-1, 0) and C(3, 0).

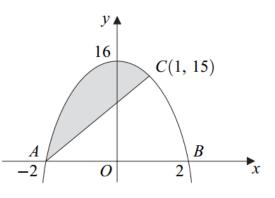
(i) State the coordinates of the point *A*. (1 mark)

(ii) Find
$$\int_{-1}^{3} (x^3 - 7x - 6) dx$$
. (5 marks)

- (iii) Hence find the area of the shaded region bounded by the curve $y = x^3 7x 6$ and the x-axis between B and C. (1 mark)
- (iv) Find the gradient of the curve $y = x^3 7x 6$ at the point *B*. (3 marks)
- (v) Hence find an equation of the normal to the curve at the point B. (3 marks)

Two numbers, x and y, are such that 3x + y = 9, where $x \ge 0$ and $y \ge 0$. 3 It is given that $V = xy^2$. Show that $V = 81x - 54x^2 + 9x^3$. (a) (2 marks) (i) Show that $\frac{dV}{dx} = k(x^2 - 4x + 3)$, and state the value of the integer k. (b) (4 marks) (ii) Hence find the two values of x for which $\frac{dV}{dx} = 0$. (2 marks) (c) Find $\frac{d^2 V}{dr^2}$. (2 marks) (i) Find the value of $\frac{d^2 V}{dx^2}$ for each of the two values of x found in part (b)(ii). (d) (1 mark) (ii) Hence determine the value of x for which V has a maximum value. (1 mark) (iii) Find the maximum value of V. (1 mark)

5 The curve with equation $y = 16 - x^4$ is sketched below.



The points A(-2, 0), B(2, 0) and C(1, 15) lie on the curve.

(a) Find an equation of the straight line AC. (3 marks)

(b) (i) Find
$$\int_{-2}^{1} (16 - x^4) dx$$
. (5 marks)

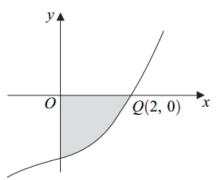
(ii) Hence calculate the area of the shaded region bounded by the curve and the line AC. (3 marks)

January 2009

5	A model car moves so that its distance, x centimetres, from a fixed point O after time t seconds is given by			
		$x = \frac{1}{2}t^4 - 20t^2 + 66t, \qquad 0 \le t \le 4$		
	(a)	Find:		
		(i) $\frac{\mathrm{d}x}{\mathrm{d}t}$;	(3 marks)	
		(ii) $\frac{\mathrm{d}^2 x}{\mathrm{d}t^2}$.	(2 marks)	
	(b)	Verify that x has a stationary value when $t = 3$, and determine whether this s value is a maximum value or a minimum value.	tationary (4 marks)	
	(c)	Find the rate of change of x with respect to t when $t = 1$.	(2 marks)	

- (d) Determine whether the distance of the car from O is increasing or decreasing at the instant when t = 2. (2 marks)
- 6 (a) The polynomial p(x) is given by $p(x) = x^3 + x 10$.
 - (i) Use the Factor Theorem to show that x 2 is a factor of p(x). (2 marks)
 - (ii) Express p(x) in the form $(x-2)(x^2 + ax + b)$, where a and b are constants. (2 marks)

(b) The curve C with equation $y = x^3 + x - 10$, sketched below, crosses the x-axis at the point Q(2, 0).



(i) Find the gradient of the curve C at the point Q. (4 marks)

- (ii) Hence find an equation of the tangent to the curve C at the point Q. (2 marks)
- (iii) Find $\int (x^3 + x 10) \, dx$. (3 marks)

(iv) Hence find the area of the shaded region bounded by the curve *C* and the coordinate axes. (2 marks)

3 The curve with equation y = x⁵ + 20x² - 8 passes through the point P, where x = -2.
(a) Find dy/dx. (3 marks)
(b) Verify that the point P is a stationary point of the curve. (2 marks)
(c) (i) Find the value of d²y/dx² at the point P. (3 marks)
(ii) Hence, or otherwise, determine whether P is a maximum point or a minimum point. (1 mark)

- (d) Find an equation of the tangent to the curve at the point where x = 1. (4 marks)
- The polynomial p(x) is given by $p(x) = x^3 x + 6$. 4 (a) Find the remainder when p(x) is divided by x - 3. (2 marks) (i) (ii) Use the Factor Theorem to show that x + 2 is a factor of p(x). (2 marks) Express $p(x) = x^3 - x + 6$ in the form $(x+2)(x^2 + bx + c)$, where b and c are (iii) integers. (2 marks) The equation p(x) = 0 has one root equal to -2. Show that the equation has no (iv) other real roots. (2 marks) (b) The curve with equation $y = x^3 - x + 6$ is sketched below. B

 $\begin{vmatrix} -2 & O \end{vmatrix}$ x

The curve cuts the x-axis at the point A(-2, 0) and the y-axis at the point B.

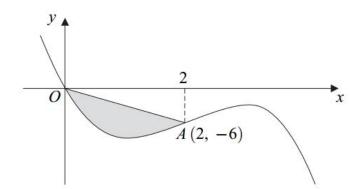
(i) State the y-coordinate of the point B. (1 mark)

(ii) Find
$$\int_{-2}^{0} (x^3 - x + 6) dx$$
. (5 marks)

(iii) Hence find the area of the shaded region bounded by the curve $y = x^3 - x + 6$ and the line *AB*. (3 marks)

- 3 The depth of water, y metres, in a tank after time t hours is given by $y = \frac{1}{8}t^4 - 2t^2 + 4t, \qquad 0 \le t \le 4$ (a) Find: (i) $\frac{dy}{dt}$; (3 marks) (ii) $\frac{d^2y}{dt^2}$. (2 marks)
 - (b) Verify that y has a stationary value when t = 2 and determine whether it is a maximum value or a minimum value. (4 marks)
 - (c) (i) Find the rate of change of the depth of water, in metres per hour, when t = 1. (2 marks)
 - (ii) Hence determine, with a reason, whether the depth of water is increasing or decreasing when t = 1. (1 mark)

6 The curve with equation $y = 12x^2 - 19x - 2x^3$ is sketched below.

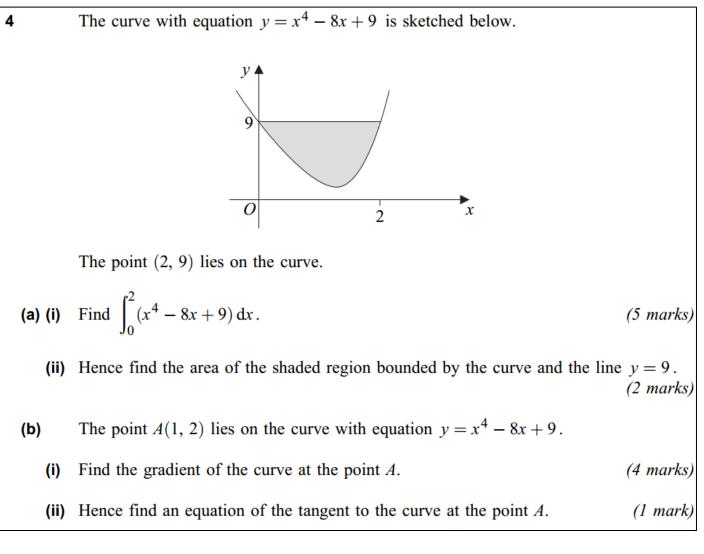


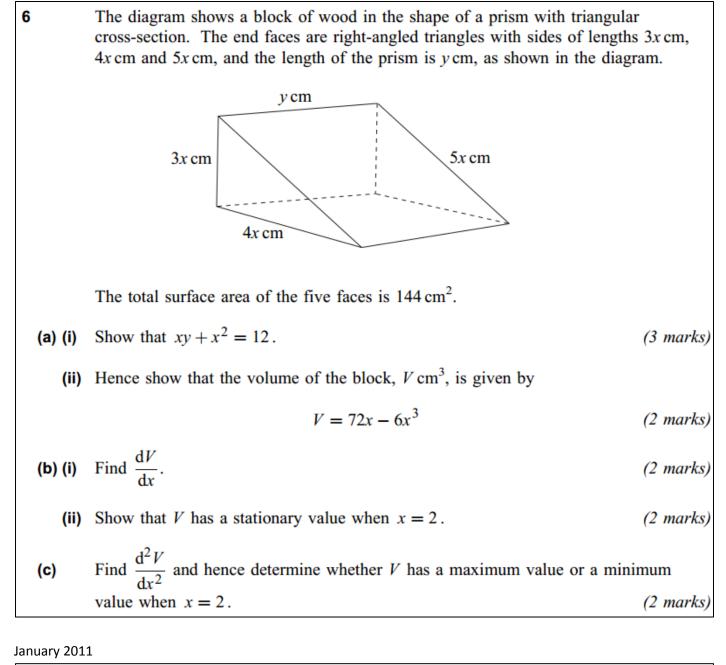
The curve crosses the x-axis at the origin O, and the point A(2, -6) lies on the curve.

- (a) (i) Find the gradient of the curve with equation $y = 12x^2 19x 2x^3$ at the point A. (4 marks)
 - (ii) Hence find the equation of the normal to the curve at the point A, giving your answer in the form x + py + q = 0, where p and q are integers. (3 marks)

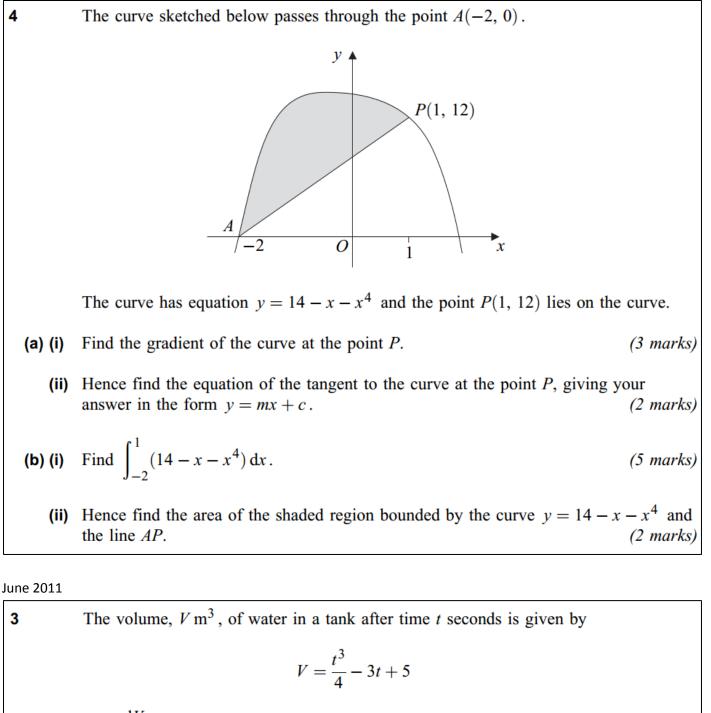
(b) (i) Find the value of
$$\int_0^2 (12x^2 - 19x - 2x^3) dx$$
. (5 marks)

(ii) Hence determine the area of the shaded region bounded by the curve and the line *OA*. (3 marks)





1	The curve with equation $y = 13 + 18x + 3x^2 - 4x^3$ passes through the point <i>P</i> where $x = -1$.	
(a)	Find $\frac{\mathrm{d}y}{\mathrm{d}x}$. (3 marks)	
(b)	Show that the point P is a stationary point of the curve and find the other value of x where the curve has a stationary point. (3 marks)	
(c) (i)	Find the value of $\frac{d^2y}{dx^2}$ at the point <i>P</i> . (3 marks)	
(ii)	Hence, or otherwise, determine whether P is a maximum point or a minimum point. (1 mark	

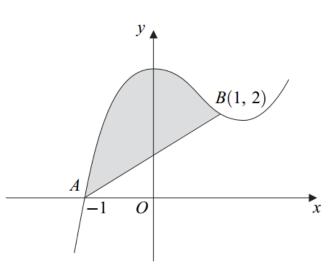


(a) Find
$$\frac{\mathrm{d}V}{\mathrm{d}t}$$
. (2 marks)

(b) (i) Find the rate of change of volume, in $m^3 s^{-1}$, when t = 1. (2 marks)

- (ii) Hence determine, with a reason, whether the volume is increasing or decreasing when t = 1. (1 mark)
- (c) (i) Find the positive value of t for which V has a stationary value. (3 marks)
 - (ii) Find $\frac{d^2 V}{dt^2}$, and hence determine whether this stationary value is a maximum value or a minimum value. (3 marks)

The curve with equation $y = x^3 - 2x^2 + 3$ is sketched below.

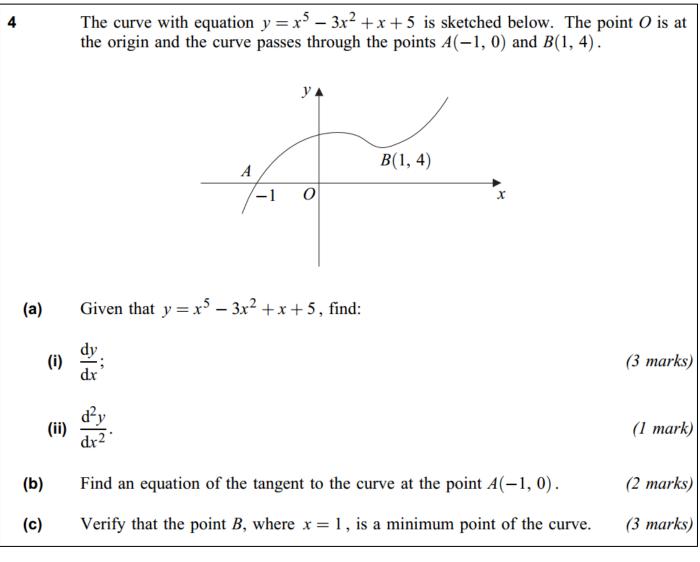


The curve cuts the x-axis at the point A(-1, 0) and passes through the point B(1, 2).

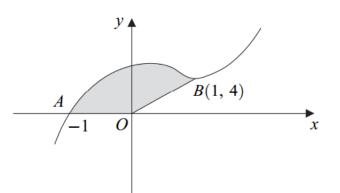
(a) Find
$$\int_{-1}^{1} (x^3 - 2x^2 + 3) dx$$
. (5 marks)

(b) Hence find the area of the shaded region bounded by the curve $y = x^3 - 2x^2 + 3$ and the line *AB*. (3 marks)

6

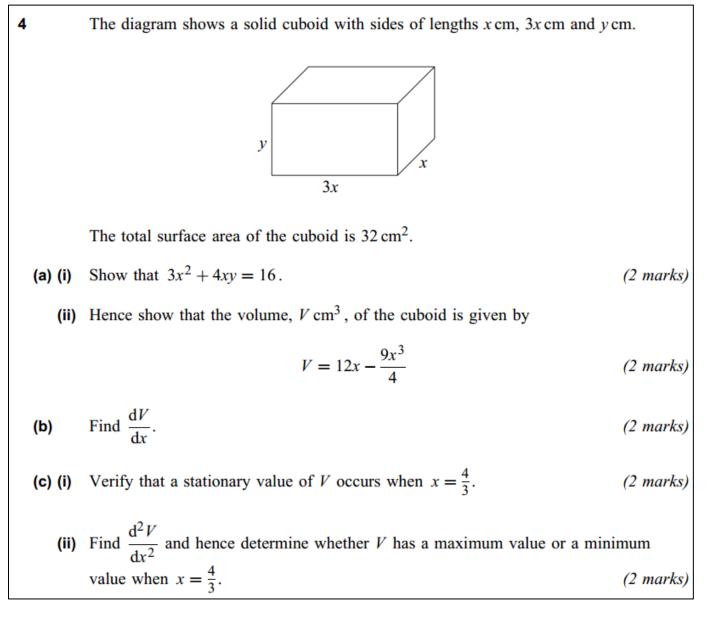


4 (d) The curve with equation $y = x^5 - 3x^2 + x + 5$ is sketched below. The point *O* is at the origin and the curve passes through the points A(-1, 0) and B(1, 4).

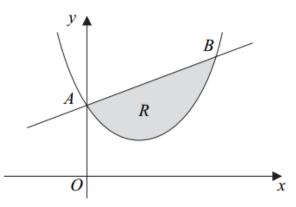


(i) Find
$$\int_{-1}^{1} (x^5 - 3x^2 + x + 5) \, dx$$
. (5 marks)

(ii) Hence find the area of the shaded region bounded by the curve between A and B and the line segments AO and OB. (2 marks)



- **5 (a) (i)** Express $x^2 3x + 5$ in the form $(x p)^2 + q$. (2 marks)
 - (ii) Hence write down the equation of the line of symmetry of the curve with equation $y = x^2 3x + 5$. (1 mark)
 - (b) The curve C with equation $y = x^2 3x + 5$ and the straight line y = x + 5 intersect at the point A(0, 5) and at the point B, as shown in the diagram below.



(i) Find the coordinates of the point *B*.

value or a minimum value.

(ii) Find
$$\int (x^2 - 3x + 5) dx$$
. (3 marks)

(3 marks)

(1 mark)

(iii) Find the area of the shaded region R bounded by the curve C and the line segment AB. (4 marks)

January 2013

2 A bird flies from a tree. At time t seconds, the bird's height, y metres, above the horizontal ground is given by $y = \frac{1}{8}t^4 - t^2 + 5, \quad 0 \le t \le 4$ Find $\frac{dy}{dt}$. (2 marks) (a) Find the rate of change of height of the bird in metres per second when t = 1. (b) (i) (2 marks) (ii) Determine, with a reason, whether the bird's height above the horizontal ground is increasing or decreasing when t = 1. (1 mark)Find the value of $\frac{d^2y}{dt^2}$ when t = 2. (c) (i) (2 marks) (ii) Given that y has a stationary value when t = 2, state whether this is a maximum

6	The gradient, $\frac{dy}{dx}$, of a curve at the point (x, y) is given by	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 10x^4 - 6x^2 + 5$	
	The curve passes through the point $P(1, 4)$.	
(a)	Find the equation of the tangent to the curve at the point <i>P</i> , giving your answer the form $y = mx + c$.	er in 8 <i>marks)</i>
(b)	Find the equation of the curve. (5	5 marks)