Differentiation

The function f is defined for all real values of x by

$$f(x) = (x^2 + 4)(2x - 1)$$
.

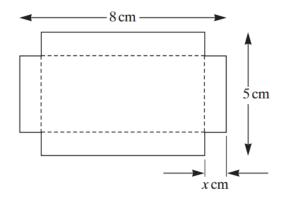
- (a) Prove that the curve with equation y = f(x) crosses the x-axis at only one point and state the x-coordinate of this point. (2 marks)
- (b) (i) Differentiate f(x) with respect to x to obtain f'(x). (4 marks)
 - (ii) Hence show that the gradient of the curve y = f(x) is 12 at the point where x = 1.

 (2 marks)
 - (iii) Prove that the curve y = f(x) has no stationary point. (2 marks)
- (c) The curve y = f(x) intersects the line y = x at only one point B.
 - (i) Show that the x-coordinate of B satisfies the equation

$$2x^3 - x^2 + 7x - 4 = 0. (1 mark)$$

Question	Solution	Marks	Total	Comments
7 (a)	$x^2 + 4 \neq 0$ for real x oe	B1		
	$y = 0$ when $2x-1=0$ ie $x = \frac{1}{2}$	B1	(2)	
(b)(i)	$f(x) = 2x^3 - x^2 + 8x - 4$ $f'(x) = 6x^2 - 2x + 8$	M1 A1 m1 A1 ft	(4)	M1: for attempt to expand brackets > 2 terms m1: for obvious attempt to differentiate A1 ft: only ft if equivalent difficulty
	$f'(1) = 6(1)^2 - 2(1) + 8$ = 6 - 2 + 8 = 12	M1 A1 cso	(2)	Attempt to find f'(1) AG obtained convincingly
(iii)	For st. pt $f'(x)=0 \Rightarrow 6x^2 - 2x + 8 = 0$ $b^2 - 4ac = 4 - 192$	M1		Consideration of $b^2 - 4ac$ (any form)
	-188<0	A1	(2)	A1: for a statement about the 'correct' value of ' $b^2 - 4ac$ '
(c)(i)	At pt of intersection $2x^3 - x^2 + 8x - 4 = x$ x-coord. of B satisfies, $2x^3 - x^2 + 7x - 4 = 0$	B1	(1)	AG obtained convincingly

Small trays are to be made from rectangular pieces of card. Each piece of card is 8 cm by 5 cm and the tray is formed by removing squares of side x cm from each corner and folding the remaining card along the dashed lines, as shown in the diagram, to form an open-topped box.



- (a) Explain why 0 < x < 2.5. (1 mark)
- (b) Show that the volume, $V \text{ cm}^3$, of a tray is given by

$$V = 4x^3 - 26x^2 + 40x. (3 marks)$$

- (c) Find the value of x for which $\frac{dV}{dx} = 0$. (5 marks)
- (d) Calculate the greatest possible volume of a tray. (1 mark)

Q	Solution	Marks	Total	Comments
5 (a)	$(0 <) 2x < 5 \Rightarrow (0 <) x < 2.5$	B1	1	in effect, 5÷2
(b)	$V = x(5-2x)(8-2x)$ $= x(4x^2 - 26x + 40)$ $= 4x^3 - 26x^2 + 40x$	M1 M1 A1	3	expanding sensible quadratic
(c)	$\frac{\mathrm{d}V}{\mathrm{d}x} = 12x^2 - 52x + 40$	M1A1	3	M1 for 2 correct
	$12x^{2} - 52x + 40 = 0$ $x = 1 \left(\text{or } \frac{10}{3}\right) \qquad \boxed{\text{false argument } \\ \text{M0}}$	M1A2	5	$\begin{cases} M1 \text{ for solving quadratic} \\ \text{allow A1 for } \frac{10}{3} \text{ only or } 1, -\frac{10}{3} \end{cases}$
(d)	18 (cm ³)	B1	1	
	Total		10	

An office worker can leave home at any time between 6.00 am and 10.00 am each morning. When he leaves home x hours after 6.00 am ($0 \le x \le 4$), his journey time to the office is y minutes, where

$$y = x^4 - 8x^3 + 16x^2 + 8.$$

(a) Find
$$\frac{dy}{dx}$$
. (3 marks)

- (b) Find the **three** values of x for which $\frac{dy}{dx} = 0$. (4 marks)
- (c) Show that y has a maximum value when x = 2. (3 marks)
- (d) Find the time at which the office worker arrives at the office on a day when his journey time is a maximum. (2 marks)

8	(a)	$y' = 4x^3 - 24x^2 + 32x$	M1A2,1	3	M1 if at least one term correct; -1 EE
	(b)	y' = 0 for x = 0	B1		Condone factors instead of values in (b)
		and when $x^2 - 6x + 8 = 0$	M1		OE method leading to 2 non-zero values
		ie for $x = 2, 4$	A2,1	4	-1 EE
					NMS 1/3 for $x = 2$ or $x = 4$, 2/3 for both, 4/4 for all three correct values
	(c)	Values of y for $x < 2$, $x = 2$, $x > 2$	M1A1		or of y' for $x < 2$, $x > 2$
					or of y'' for $x = 2$
		Conclusion drawn	E1	3	AG
	(d)	Arrival time is 8.24 am	B1B1	2	
		Total		12	

The size of a population, P, of birds on an island is modelled by

$$P = 59 + 117t + 57t^2 - t^3,$$

where *t* is the time in years after 1970.

(a) Find
$$\frac{dP}{dt}$$
. (2 marks)

- (b) (i) Find the positive value of t for which P has a stationary value. (3 marks)
 - (ii) Determine whether this stationary value is a maximum or a minimum. (2 marks)
- (c) (i) State the year when the model predicts that the population will reach its maximum value. (1 mark)
 - (ii) Determine what the model predicts will happen in the year 2029. (1 mark)

Q	Solution	Marks	Total	Comments
4 (a)	$\frac{dP}{dt} = -3t^2 + 114t + 117$	M1A1	2	M1 if 2 correct terms
(b)(i)	$3t^2 - 114t - 117 = 0$	M1		set $\frac{dP}{dt} = 0$ quadratic only.
	t = 39(or -1)	m1A1	3	allow answer only
(ii)	e.g. $\frac{dy}{dx}$ changes from $+ve$ to $-ve$	M1		allow sketch or values at T point
	Maximum	A1	2	S.R. B1 if not justified
				S.R. B1 if $\frac{d^2 P}{dt^2} = 114 - 6t$ only
(c)(i)	2009√	B1√	1	$\sqrt{\text{ on } t > 0 \text{ from (b)(i)}}$
(ii)	Extinction	B1	1	allow $P = 0$
				do not allow "minimum"
	Total		9	