8 A particle, of mass m, moves in a straight line on a smooth horizontal surface. As it moves it experiences a resistance force of magnitude kv^2 , where k is a constant and v is the speed of the particle, at time t. The particle moves with speed U at time t = 0.

Show that $v = \frac{mU}{Ukt + m}$. (6 marks)

UKl + M			1
$m\frac{\mathrm{d}v}{\mathrm{d}t} = -kv^2$	M1		Forming an equation of motion with $\frac{dv}{dt}$
$\int \frac{1}{v^2} \mathrm{d} v = \int -\frac{k}{m} \mathrm{d} t$			(2 terms)
$-\frac{1}{v} = -\frac{k}{m}t + c$	M1		Integration with $\frac{1}{v}$ term (constant not
			needed)
$\frac{1}{v} = \frac{kt - mc}{m}$	A 1		Correct expression
$v = \frac{m}{kt - mc}$			
$t=0, v=U \rightarrow c=-\frac{1}{2}$	M1		Finding c
$U = 0, V = 0 \Rightarrow C = U$	A1		Correct c
m Um			
$V = \frac{1}{Ukt + m}$	A 1		Complete correct solution ag
$\kappa t + \frac{U}{U}$		6	
Total		6	
	$m\frac{dv}{dt} = -kv^{2}$ $\int \frac{1}{v^{2}} dv = \int -\frac{k}{m} dt$ $-\frac{1}{v} = -\frac{k}{m}t + c$ $\frac{1}{v} = \frac{kt - mc}{m}$	$m\frac{dv}{dt} = -kv^{2}$ $\int \frac{1}{v^{2}} dv = \int -\frac{k}{m} dt$ $-\frac{1}{v} = -\frac{k}{m}t + c$ M1 $\frac{1}{v} = \frac{kt - mc}{m}$ $v = \frac{m}{kt - mc}$ $t = 0, v = U \Rightarrow c = -\frac{1}{U}$ M1 A1 $v = \frac{m}{kt + \frac{m}{U}} = \frac{Um}{Ukt + m}$ A1	$m\frac{dv}{dt} = -kv^{2}$ $\int \frac{1}{v^{2}} dv = \int -\frac{k}{m} dt$ $-\frac{1}{v} = -\frac{k}{m}t + c$ $M1$ $\frac{1}{v} = \frac{kt - mc}{m}$ $v = \frac{m}{kt - mc}$ $t = 0, v = U \Rightarrow c = -\frac{1}{U}$ $v = \frac{m}{kt + \frac{m}{U}} = \frac{Um}{Ukt + m}$ $A1$ $A1$ $A1$ $A1$

- 8 A parachutist, of mass 80 kg, is falling vertically. When his speed is $30~\text{ms}^{-1}$, his parachute opens. He then experiences an air resistance force of magnitude $196\nu~\text{N}$, where $\nu~\text{ms}^{-1}$ is his speed.
 - (a) Show that at time t seconds after the parachute is opened, the speed of the parachutist is given by

$$v = 4 + 26e^{-2.45t}$$
. (6 marks)

(b) Sketch a graph to show how the parachutist's speed varies with time. (2 marks)

Question	Solution	Marks	Total	Comments
8 (a)	$80\frac{dv}{dt} = 80 \times 9.8 - 196v$	M1		
	$\frac{dv}{dt} = 9.8 - 2.45v$	A 1		A1: 3 term equation of motion dv
	$\frac{1}{v-4}\frac{dv}{dt} = -2.45$			with $a = \frac{dv}{dt}$
	$\int \frac{1}{v-4} dv = \int -2.45 dt$	M1A1		MI: Integrating to get in term
	$\ln v - 4 = -2.45t + c$			M1: Integrating to get ln term
	$v - 4 = Ae^{-2.45t}$ $v = 4 + Ae^{-2.45t}$	M1		M1: Use of initial conditions
	$v = 30, t = 0 \Rightarrow A = 26$	A 1	(6)	
8 (b)	$v = 4 + 26e^{-2.45t}$			
	30			
	$\begin{array}{c c} 4 & & & \\ \hline & & \\ \end{array}$	B1 B1	(2)	B1: Group with non-zero asymptote B1: Values

8 A particle of mass m is moving along a straight horizontal line. At time t the particle has speed v. Initially the particle is at the origin and has speed U. As it moves the particle is subject to a resistance force of magnitude mkv^3 .

(a) Show that
$$v^2 = \frac{U^2}{2kU^2t + 1}$$
. (6 marks)

(b) What happens to v as t increases?

(1 mark)

8(a)	$m\frac{\mathrm{d}v}{\mathrm{d}t} = -mkv^3$	M1		Forming a differential equation
	$\int \frac{1}{v^3} dv = -\int k dt$ $-\frac{1}{2v^2} = -kt + c$			
	$-\frac{1}{2v^2} = -kt + c$	m1		Integrating to get a $\frac{1}{v^2}$ term
		A 1		Correct Integral including c
	$v = U, t = 0 \Rightarrow c = -\frac{1}{2U^2}$	m1 A1		Finding c Correct c
	$\frac{1}{2v^2} = kt + \frac{1}{2U^2} = \frac{2ktU^2 + 1}{2U^2}$			
	$v = U, t = 0 \Rightarrow c = -\frac{1}{2U^2}$ $\frac{1}{2v^2} = kt + \frac{1}{2U^2} = \frac{2ktU^2 + 1}{2U^2}$ $v^2 = \frac{U^2}{2ktU^2 + 1}$	A 1	6	Correct final answer from correct working
(b)	v tends to zero	B1	1	Allow decreases
	Total		7	

- 8 A car accelerates from rest along a straight horizontal road. It experiences a constant horizontal forward force of magnitude 2000 newtons and a resistance force. The resistance force has magnitude 40v newtons, when the speed of the car is $v \, \text{m} \, \text{s}^{-1}$. The mass of the car is $1000 \, \text{kg}$.
 - (a) Show that

$$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{50 - v}{25} \tag{2 marks}$$

(b) Find the velocity of the car at time t.

(5 marks)

8(a)	$1000 \frac{dv}{dt} = 2000 - 40v$	M1		Use of Newton's 2nd law
	$\frac{\mathrm{d}v}{\mathrm{d}t} = \frac{2000 - 40v}{1000} = \frac{50 - v}{25}$	A 1	2	Correct expression from correct working
(b)	$\int \frac{1}{50 - v} dv = \int \frac{1}{25} dt$ $-\ln 50 - v = \frac{t}{25} + c$	M1 A1		Integration to obtain <i>t</i> and 1n term Correct integration
	$50 - v = Ae^{\frac{t}{25}}$ $v = 50 - Ae^{-\frac{t}{25}}$ $v = 0, t = 0 \Rightarrow A = 50$	m1 m1		Solving for <i>v</i> Finding constant of integration
	$v = 50 \left(1 - e^{-\frac{t}{25}} \right)$	A1	5	Correct final answer
	Total		7	