Binomial Expansion

(a) Write down the first four terms in ascending powers of x in the expansion of

$$(1+x)^8$$
,

simplifying your coefficients as much as possible.

(2 marks)

(b) Find the coefficient of x^3 in the expansion of $(3-2x)(1+x)^8$. (2 marks)

Question Number and part	Solution	Marks	Total Marks	Comments
1(a) (b)	$1 + 8x + 28x^2 + 56x^3$ generous $28 \times -2 + 3 \times 56$ " their 28 and 56"	M1 A1 M1	2	good attempt at coefficients or Pascal's triangle to 1 8 must be simplified strict but condone +
	=112	A1	2	condone $112x^3$ even if not selected
	Total		4	

Expand $(3-2x)^4$ in ascending powers of x and simplify each coefficient. (4)

$$= 3^{4} + 4(3^{3})(-2x) + 6(3^{2})(-2x)^{2} + 4(3)(-2x)^{3} + (-2x)^{4}$$

$$= 81 - 216x + 216x^{2} - 96x^{3} + 16x^{4}$$
B1 A1 (4)

- (a) Expand $(1+3x)^8$ in ascending powers of x up to and including the term in x^3 . You should simplify each coefficient in your expansion. (4)
- (b) Use your series, together with a suitable value of x which you should state, to estimate the value of $(1.003)^8$, giving your answer to 8 significant figures. (3)

(a) = 1 + 8(3x) +
$$\binom{8}{2}$$
(3x)² + $\binom{8}{3}$ (3x)³ + ... M1 A1
= 1 + 24x + 252x² + 1512x³ + ... M1 A1

(b)
$$x = 0.001$$
 B1
 $(1.003)^8 \approx 1 + 0.024 + 0.000252 + 0.00001512$ M1
 $= 1.0242535(8sf)$ A1 (7)

The coefficient of x^2 in the binomial expansion of $(1 + kx)^7$, where k is a positive constant, is 525.

(a) Find the value of
$$k$$
. (3)

Using this value of k,

(b) show that the coefficient of
$$x^3$$
 in the expansion is 4375, (2)

(c) find the first three terms in the expansion in ascending powers of x of

$$(2-x)(1+kx)^7$$
. (3)

(a)
$$(1 + kx)^7 = \dots + {7 \choose 2} (kx)^2 + \dots$$

 $\therefore \frac{7 \times 6}{2} \times k^2 = 525$

$$k^2 = \frac{525}{21} = 25$$
 M1

$$k > 0$$
 : $k = 5$

(b)
$$(1 + 5x)^7 = \dots + {7 \choose 3} (5x)^3 + \dots$$

 $\therefore \text{ coeff. of } x^3 = \frac{7 \times 6 \times 5}{3 \times 2} \times 125 = 4375$
M1 A1

(c)
$$(1+5x)^7 = 1+35x+525x^2 + ...$$
 B1
 $(2-x)(1+5x)^7 = (2-x)(1+35x+525x^2 + ...)$
 $= 2+70x+1050x^2 - x - 35x^2 + ...$ M1
 $= 2+69x+1015x^2 + ...$ A1 (8)