Edexcel GCSEMathematics (Linear) – 1MA0

CIRCLE THEOREMS

Materials required for examination Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser. Tracing paper may be used. **Items included with question papers** Nil

Instructions

Use black ink or ball-point pen.

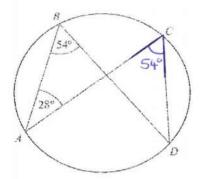
Fill in the boxes at the top of this page with your name, centre number and candidate number. Answer all questions.

Answer the questions in the spaces provided – there may be more space than you need. Calculators may be used.

Information

The marks for each question are shown in brackets – use this as a guide as to how much time to spend on **each** question.

Questions labelled with an **asterisk** (*) are ones where the quality of your written communication will be assessed – you should take particular care on these questions with your spelling, punctuation and grammar, as well as the clarity of expression.


Advice

Read each question carefully before you start to answer it.

Keep an eye on the time.

Try to answer every question.

Check your answers if you have time at the end.

A, B, C and D are points on the circumference of a circle.

Angle $ABD = 54^{\circ}$.

Angle $BAC = 28^{\circ}$.

(i) Find the size of angle ACD.

	511
	24

(ii) Give a reason for your answer.

Anglesia	the some	segment	ore	equal.	
J		9		1	

(3 marks)

2.

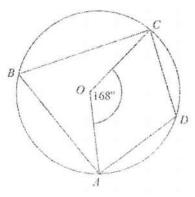
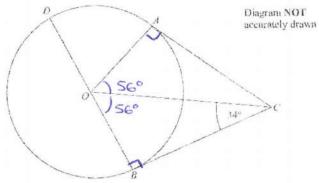


Diagram NOT accurately drawn


A, B, C and D are points on the circumference of a circle, centre O.

Angle $AOC = 168^{\circ}$

Work out the size of angle ADC.

You must give reasons for your working.

(4 marks)

A, B and D are points on the circumference of a circle, centre O.

BOD is a diameter of the circle.

BC and AC are tangents to the circle.

Angle $OCB = 34^{\circ}$.

Work out the size of angle DOA.

A radius and tangent meat at 90° on the circumference LCB0 = 90° of a circle.

(BOC = 180 - (34+90) Angles in a briangle have assumed 1800. = 180-124 = 560

LBOC = LCOA as A BOC and A Aoc are conquent

Angles on a straight 68 .

LDOA = 180 - (LROC + LCOA) = 180 - (S6 + S6) = 68° une nowe a sum g 1800

(4 marks)

(4 marks)

4.

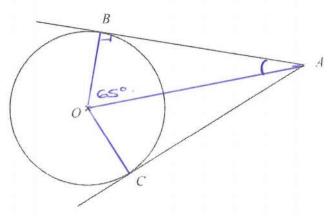


Diagram NOT accurately drawn

B and C are points on a circle, centre O. AB and AC are tangents to the circle. Angle $BOC = 130^{\circ}$.

Work out the size of angle BAO.

LBOA = 1 LBOC = 1 (130)=650

Targent and radius meating LOBA = 90°

LBAO = 180 - (65+90) = 180-155 = 25°

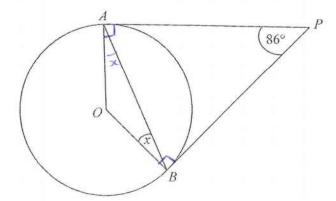


Diagram NOT accurately drawn

A and B are points on the circumference of a circle, centre O. PA and PB are tangents to the circle. Angle APB is 86° .

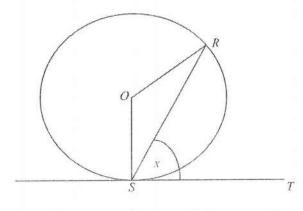
Work out the size of the angle marked x.

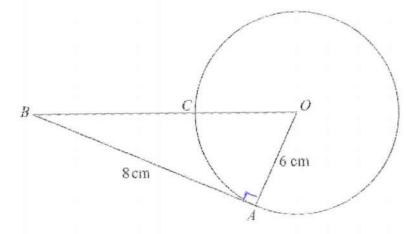
 \triangle BOA is isosceres as OB=OA (both radii) 180=94+2x \Rightarrow 2x=86

43 .

(3 marks)

6.




Diagram NOT accurately drawn

R and S are two points on a circle, centre O. TS is a tangent to the circle. Angle RST = x.

Prove that angle ROS = 2x.

You must give reasons for each stage of your working.

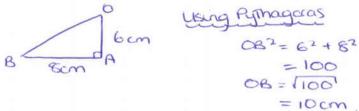
LOST = 90° Tangent and Radius meeting at a circumference.
LRSO = 90-
$$\times$$

 $ZSRO = ZRSO = 90- \times as ARSO is isoscales, Ro = so (both radii)
 $ZROS = 180-(90- \times)-(90- \times) Sum of angles in a (4 marks)
= 180-90+ \times -90+ \times brangle is 180°
= 2 $\times$$$

In the diagram, O is the centre of the circle.

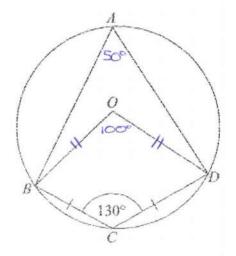
A and C are points on the circumference of the circle.

BCO is a straight line.


BA is a tangent to the circle.

AB = 8 cm.OA = 6 cm.

(a) Explain why angle OAB is a right angle.


A tangent and radius meat at 90° on the counterers of a circle.

(b) Work out the length of BC.

oc = 6cm (Radius of the circle). so BC = 10-6 = 4cm

									1	1											
		,								,	t		*		è	,		,	(1	1
																			1	3)

A, B, C and D are points on a circle, centre O. BC = CD. Angle $BCD = 130^{\circ}$.

(a) Write down the size of angle *BAD*. Give a reason for your answer.

						2	5	(2)											0
					٠						•	٠	٠	٠	٠	٠	٠	٠		۰	
																		(1	2)

(b) Work out the size of angle ODC.Give reasons for your answer.

OBCD is a Kite (pairs of adjacent equal sides), therefore LOBC = LODC, $(=\infty)$.

65. .

(4)

(6 marks)

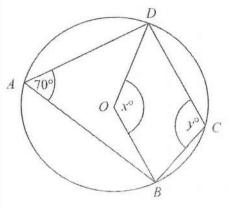


Diagram NOT accurately drawn

In the diagram, A, B, C and D are points on the circumference of a circle, centre O. Angle $BAD = 70^{\circ}$.

Angle $BOD = x^{\circ}$.

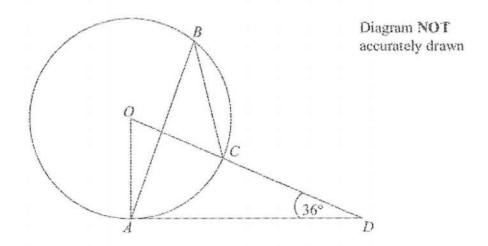
Angle $BCD = y^{\circ}$.

(a) (i) Work out the value of x.

(ii) Give a reason for your answer.

Angle, at the centre is three the engle at the

(2)


(b) (i) Work out the value of y.

(ii) Give a reason for your answer.

Opposites andes in a cyclic quadriateral have a sum.

(2)

10.

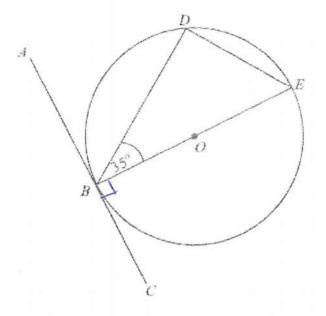
The diagram shows a circle centre O. A, B and C are points on the circumference.

DCO is a straight line.
DA is a tangent to the circle.

Angle $ADO = 36^{\circ}$

(a) Work out the size of angle AOD.

(b) (i) Work out the size of angle ABC.


$$\angle ABC = \frac{1}{2} \angle AOC$$

= $\frac{1}{2} \angle AOD$
= $\frac{1}{2} (S4)$
= 27°

27 .

(ii) Give a reason for your answer.

The engle at the centre is howethe engle on the circumference	0
So LAOC = 2 LABC	

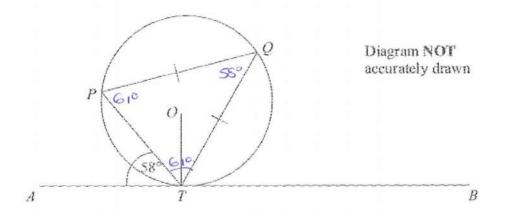
(3) arks)

(2)

(4 marks)

B, D and E are points on a circle centre O. ABC is a tangent to the circle.

BE is a diameter of the circle.


Angle $DBE = 35^{\circ}$.

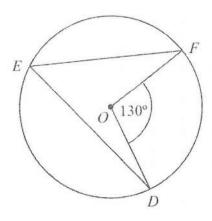
(a) Find the size of angle ABD.

Give a reason for your answer.

(b) Find the size of angle DEB.

Give a reason for your answer.

P, Q and T are points on the circumference of a circle, centre O. The line ATB is the tangent at T to the circle.


$$PQ = TQ$$
.
Angle $ATP = 58^{\circ}$.

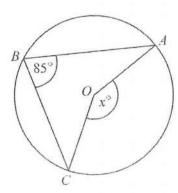
Calculate the size of angle *OTQ*. Give a reason for each stage in your working.

$$\angle TQR = 58^{\circ}$$
 Alternate Segment Theorem $\angle QPT = \angle PTQ$ isosceles triengle $\angle QPT = \frac{180 - 58}{2} = 61^{\circ}$.

(4 marks)

13. (a)

D, E and F are points on the circumference of a circle, centre O. Angle $DOF = 130^{\circ}$.


(i) Work out the size of angle DEF.

65....

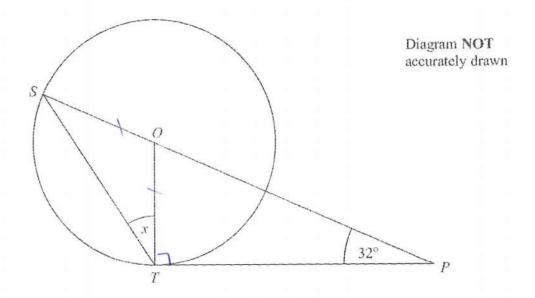
(ii) Give a reason for your answer.

Angle at the circumference is half the engle at the

(2)

(b)

In the diagram, A, B and C are points on the circumference of a circle, centre O.


Angle $ABC = 85^{\circ}$.

(i) Work out the size of the angle marked x° .

(ii) Give a reason for your answer.

Angle at the contre is the conge at the circumterence.

(2)

S and T are points on the circumference of a circle, centre O. PT is a tangent to the circle. SOP is a straight line.

Angle $OPT = 32^{\circ}$.

Work out the size of the angle marked x. Give reasons for your answer.

DOTS is isoscales as OS=OT (both radii) so LOST = LSTO

$$122 + 2x = 180$$
$$2x = 58$$
$$x = 29^{\circ}$$

29 .

(Total 5 marks)