Name: Answeß

Exam Style Questions

Quadratic Sequences

2
 Corbettmoths

Ensure you have: Pencil, pen, ruler, protractor, pair of compasses and eraser
You may use tracing paper if needed

Guidance

1. Read each question carefully before you begin answering it.
2. Don't spend too long on one question.
3. Attempt every question.
4. Check your answers seem right.
5. Always show your workings

Revision for this topic

www.corbettmaths.com/contents

$$
\text { Video } 388
$$

1. The first four terms of a quadratic sequence are shown below Work out the next term.

2. The first four terms of a quadratic sequence are shown below Work out the next term.

54
3. The $n^{\text {th }}$ term of a quadratic sequence is $n^{2}-2 n+8$

Work out the first three terms of this sequence

$$
\begin{aligned}
& u_{1}=1^{2}-2(1)+8=7 \\
& u_{2}=2^{2}-2(2)+8=8 \\
& u_{3}=3^{2}-2(3)+8=11
\end{aligned}
$$

4. A quadratic sequence has an $n^{\text {th }}$ term of $2 n^{2}+3 n-1$

Work out the value of the $6^{\text {th }}$ term of the sequence

$$
\begin{aligned}
U_{6} & =2(6)^{2}+3(6)-1 \\
& =2(36)+18-1 \\
& =72+17 \\
& =89
\end{aligned}
$$

5. A sequence has an $n^{\text {th }}$ term of $n^{2}-6 n+7$

Work out which term in the sequence has a value of 23.

$$
\begin{gather*}
n^{2}-6 n+7=23 \\
n^{2}-6 n-16=0 \\
(n-8)(n+2)=0 \tag{th}\\
n=8 \tag{2}
\end{gather*}
$$

6. Here are the first 5 terms of a quadratic sequence

Find an expression, in terms of n , for the n th term of this quadratic sequence.

7. Here are the first 5 terms of a quadratic sequence

Find an expression, in terms of n, for the nth term of this quadratic sequence.
$\begin{array}{llllll}n^{2} & 1 & 4 & 9 & 16 & 25\end{array}$
$u_{n}-n^{2} \quad 3 \quad 6 \quad 9 \quad 1215 \quad 3 n$
8. Here are the first 5 terms of a quadratic sequence

Find an expression, in terms of n, for the nth term of this quadratic sequence.

$$
\begin{array}{rllllll}
2 n^{2} & 2 & 8 & 18 & 32 & 50 & \\
0 n-2 n^{2} & 7 & 9 & 11 & 13 & 15 & 2 n+5
\end{array}
$$

$$
2 n^{2}+2 n+5
$$

9. Here is a tile.

Here is a sequence of patterns made from these tiles.

How many of these tiles are needed to make Pattern number 10 ?

$$
\begin{array}{cc}
2 n^{2} & 3 \tag{12}\\
& -2 \\
2 n^{2}-3 n+1
\end{array}
$$

when $n=10$

$$
\begin{aligned}
& 2(10)^{2}-3(10)+1 \\
= & 200-30+1 \\
= & 171
\end{aligned}
$$

-5
-8
$-3 n+1$
10. The nth term of a sequence is $n^{2}+3 n$

Two consecutive terms in the sequence have a difference of 38
Work out the two terms.

$$
\begin{gathered}
(n+1)^{2}+3(n+1)-\left[n^{2}+3 n\right]=38 \\
n^{2}+2 n+1+3 n+3-n^{2}-3 n=38 \\
2 n+4=38 \\
2 n=34 \\
n=17 \\
17^{2}+3(17)=340 \\
18^{2}+3(18)=378
\end{gathered}
$$

$$
340 \text { and } 378
$$

11. Prove that every term in the sequence $n^{2}-4 n+21$ is positive

$$
\begin{aligned}
& (n-2)^{2}-4+21 \\
& (n-2)^{2}+17
\end{aligned}
$$

$(n-2)^{2}$ is positive
$(n-2)^{2}+17$ is positive

