Student Name:	Target:	

1	The roots of the equation $x^2 - 3x + 6 = 0$ are α and β Find the value of $\alpha^2 + \beta^2$	-3
2	Using the roots above, find a quadratic equation with roots α^2 and β^2	x2+3x+36=0
3	Solve $x^2 - 6x + 25 = 0$ giving each root in the form $a + bi$	3±4i
4	Find the complex number z such that $5z + 2z^* = 35 + 6i$	5+21
5	Solve the inequality $\frac{1}{x+5} > 2$	-54x4-45
6	Solve the inequality $\frac{1}{x+5} > 2$ Work out $\begin{bmatrix} 2 & 3 \\ -1 & 4 \end{bmatrix} \begin{bmatrix} 2 & -2 \\ -2 & 5 \end{bmatrix}$	[-2 11]
7	Describe the transformation associated with the matrix: $\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix}$	stretch in a direction by SF3
8	Find the matrix that generates a rotation of 30° anticlockwise	13/2 - 42 1/2 , 13/2
9	Find the general solution, in radians, of the equation $\sin 2x = -\frac{\sqrt{3}}{2}$	X=TIN-I
10	Find the general solution, in degrees, of $2\cos^2 x = \cos x$	or $x = \pi n - \frac{\pi}{3}$ $x = 360 n^{\frac{1}{2}} ana$ $x = 360 n^{\frac{1}{2}} 60^{\circ}$
11	Write $y = ax^n$ in the form $Y = mX + c$ Indicate clearly each of Y, X, m and c	
12	A curve has equation $y = x^3$ The points P and Q lie on the curve and have x-coordinates 3 and 3+h. Find the gradient of the curve at point P.	52 = 27 + 9h+h2 As h>0 \$2=27
13	Determine whether the following integral exists and, if so, find its value. $\int_{0}^{\infty} x^{-2} dx$	$As p \to \infty$ $\int dx \to 1$ $\frac{2}{3} n \left(2n^2 + 3n + \frac{5}{2}\right)$
14	Find $\sum_{r=1}^{n} 4r^2 + 1$	$\frac{2}{3}n(2n^2+3n+\frac{5}{2})$
:15	Therefore find $\sum_{r=0}^{20} 4r^2 + 1$	11500
16	Use Newton Raphson method to find x_2 for $x^3 - 6x + 12 = 0$ given $x_1 = 2$	2/3
17	Show that the equation $x^3 - 3x + 1 = 0$ has a root between 1 and 2. Use linear interpolation to find this root.	X =1.25
18	Find the equations of the asymptotes of $y = \frac{5-2x}{x+1}$	x= 1/ 4=-2
19	Use Euler's step-by-step method, with a step length of 0.1 to estimate the value of y when $x = 0.3$, given that $y = 1$ when $x = 0$ and $\frac{dy}{dx} = \frac{1}{x^2 + 4}$ giving your answer to 3 significant figures.	1.07
	Find the possible values of m such that the line $y = mx - 7$ is a tangent to	

Studer	t Name: Target:		
1	The roots of the equation $x^2 - 5x + 4 = 0$ are α and β	15	
1	Find the value of $\frac{3}{\alpha} + \frac{3}{\beta}$	4	
2	Using the roots above, find a quadratic equation with roots $\frac{3}{\alpha}$ and $\frac{3}{\beta}$	4x²-15x+9=0 -2+i, -2-i	
3	Solve $x^2 + 4x + 5 = 0$ giving each root in the form $a + bi$	-2+i, -2-i	
4	Find the complex number z such that $9z-3z^*=24-12i$	Z=4-1	
5	Solve the inequality $\frac{6x}{x-1} < 3$	- <x< < td=""><td></td></x< <>	
6	Work out $\begin{bmatrix} -3 & 2 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} -5 & -1 \\ 0 & -5 \end{bmatrix}$	[15 -7 -20 -19]	
7	Describe the transformation associated with the matrix: $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$	Reflect in a axis.	
8	Write down the transformation that has the matrix: $\begin{bmatrix} 0.6 & 0.8 \\ -0.8 & 0.6 \end{bmatrix}$	entation about (0)	o) 53·13°
9	Find the general solution, in radians, of the equation $\cos 4x = 0.6$	1Tn ± 0.232°	
10	Find the general solution, in degrees, of $4\sin^2 2x = 3$	90°n ± 30°	
11	Write $y = ax^2 + \frac{b}{x}$ in the form $Y = mX + c$	$xy = ax^3 + b$ $y = mX + b$	
	Indicate clearly each of Y, X, m and c		4
12	A curve has equation $y = x^2 - 4x + 5$	$\frac{\delta y}{\delta x} = h$	
	The points P and Q lie on the curve and have x-coordinates 2 and 2+h.	As h→0 dy	- 0
13	Determine whether the following integral exists and, if so, find its value.	AS P->00	
	$\int_{1}^{\infty} x^2 dx = \left[\frac{2^3}{3} \right]_{1}^{p} = \frac{p^3}{3} - \frac{1}{3}$	Jax → NO value	٤
14	Find $\sum_{n=0}^{\infty} 6r^2 + 4r$	n(n+1)(2n+3	1
15	Therefore find $\sum_{r=1}^{50} 6r^2 + 4r$	262650	
16	Use Newton Raphson method to find x_2 for $x^4 - 2x + 5 = 0$ given $x_1 = -2$	-43/34 =	-19/34
17	Show that the equation $x^5 - 4x - 50 = 0$ has a root between 2 and 3. Use linear interpolation to find this root.	f(2)=-26 f(3)=181	- change of
18	Find the equations of the asymptotes of $y = \frac{3-4x}{2x-5}$	$x = \frac{5}{2}$ $y = -2$	between 223.
19	Use Euler's step-by-step method, with a step length of 0.2 to estimate the	. 0.	
	value of y when $x = 1.6$, given that $y = 4$ when $x = 1$ and $\frac{dy}{dx} = \frac{1}{3 - x}$	14.34	
	giving your answer to 3 significant figures.	<u></u>	_
20	Describe the transformation that changes $\frac{x^2}{4} - y^2 = 1$ to $\frac{(x-1)^2}{4} - (y+1)^2 = 1$	TRANSLATE [-]	,

tuden	t Name: Target:	
	The roots of the equation $2x^2 - 6x + 5 = 0$ are α and β	4
	Find the value of $\alpha^2 + \beta^2$	
	Using the roots above, find a quadratic equation with roots $\alpha^2 + 2$ and $\beta^2 + 2$	4x ² -32x+73=0
3	Solve $x^2 - 12x + 40 = 0$ giving each root in the form $a + bi$.	6±2i
1	Find the complex number z such that $2z-5z^*=15-14i$	-5-2i
5	Solve the inequality $\frac{x-1}{x-4} \le 2$	x27, x<4
6	Work out $\begin{bmatrix} 3 & 2 \\ -3 & -5 \end{bmatrix} \begin{bmatrix} 3 & -1 & 2 \\ 4 & -1 & 0 \end{bmatrix}$	Stretch SF5 in X direction
7	Describe the transformation associated with the matrix: $\begin{bmatrix} 5 & 0 \\ 0 & 2 \end{bmatrix}$	stretch SF2 in y direction
8	Find the matrix that generates a reflection in the line $y = \sqrt{3}x$	[-1/2 50/2]
9	Find the general solution, in radians, of the equation $tan(x+20^\circ) = tan 60^\circ$	X=15n+21
10	Find the general solution, in degrees, of $2\sin x \cos x - \cos x = 0$	$x = 360 n \pm 90$ and $x = 360 n \pm 360$
11	Write $y = ab^{-x}$ in the form $Y = mX + c$ Indicate clearly each of Y, X, m and c	iny = find(t)(t) + inq $y = m X + C$
12	A curve has equation $y = x^2 - 3x + 7$	59 = 3+h
	The points P and Q lie on the curve and have x-coordinates 3 and 3+h.	of P 4 = 3
13	Determine whether the following integral exists and, if so, find its value. $\int_{\rho}^{-2} \frac{1}{x^3} dx \qquad \int_{\rho}^{-2} \chi^{-3} dx = \left[\frac{\chi^{-2}}{2} \right]_{\rho}^{-2} = \left[\frac{1}{2\chi^2} \right]_{\rho}^{-2} = \frac{1}{8} + \frac{1}{2\rho^2}$	As $\rho \to \infty$ $\int dx \to -\frac{1}{8}$ $-\frac{1}{8} \ln(n+1)(3n^2+3n+4)$
14	Find $\sum_{n=1}^{n} 3r^3 + 2r$	1 n(n+1)(3n ² +3n+4)
15	Therefore find $\sum_{r=1}^{10} 3r^3 + 2r$	9185
16	Use Newton Raphson method to find x_2 for $x^3 - 2x + 3 = 0$ given $x_1 = -3$	-2.23 comme obsign
17	Show that the equation $2^x - 2x - 6 = 0$ has a root between 3 and 4. Use linear interpolation to find this root.	f(3)= 4, f(4)=2 change of sign
18	Find the equations of the asymptotes of $y = \frac{2x+7}{x^2-3x+2}$	x=2 x=1 $y=0$
19	Use Euler's step-by-step method, with a step length of 0.5 to estimate the value of y when $x = 1$, given that $y = 1$ when $x = 0$ and $\frac{dy}{dx} = \frac{1}{3-x}$	4=1.36
20	Find the possible values of m such that the line $y = mx + 10$ is a tangent to the ellipse with equation $4x^2 + y^2 = 20$	y=1.36 M=±4.

Student Name:	Target:	
		10° ×

1	The roots of the equation $3x^2 - 9x + 2 = 0$ are α and β Find the value of $\alpha + \beta$ and $\alpha\beta$	X+B=3 XB=2/3	
2	Using the roots above, find a quadratic equation with roots $\frac{1}{\alpha^2 \beta}$ and $\frac{1}{\alpha \beta^2}$		=0
3	Solve $5x^2 - 6x + 5 = 0$ giving each root in the form $a + bi$	Z = 3± 41 5	
4	Find the complex number z such that $z + 8z^* = 27 - 7i$	Z=3+1 5≤x €2	
5	Solve the inequality $\frac{2x+3}{x-2} \le 1$	54x L 2	
6	Solve the inequality $\frac{2x+3}{x-2} \le 1$ Work out $\begin{bmatrix} -1 & 3 \\ 5 & -4 \end{bmatrix} \begin{bmatrix} -1 & -1 & -3 & 3 \\ 2 & 3 & 1 & 5 \end{bmatrix}$	7 10 6 12 -13 -17 -19 -5	
7	Describe the transformation associated with the matrix: $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	reflect in line y=x reflectia line	
8	Write down the transformation that has the matrix: $\begin{bmatrix} 0.342 & 0.940 \\ 0.940 & -0.342 \end{bmatrix}$	y=tan35x or	y=0.7x
9	Find the general solution, in radians, of the equation $\sin(x+40^\circ) = \sin 50^\circ$	2TTN+計 OR 2TTN+90 2TTN+	翌.
10	Find the general solution, in degrees, of $\cos x + 1 = 2\sin^2 x$	x=360n±60 x=360n±180	
11	Write $y = bx^a$ in the form $Y = mX + c$ Indicate clearly each of Y, X, m and c	Iny=alnx+Inb Y=MX+C	
12	A curve has equation $y = 2x^2 - 5x + 4$	5a-15+2h	
12	The points P and Q lie on the curve and have x-coordinates 5 and 5+h.	ox du F	
	Find the gradient of the curve at point P.	54 = 15+24 30 dy = 15	
13	Determine whether the following integral exists and, if so, find its value.	AS0->0	
	$\int_{0}^{4} \frac{1}{\sqrt{x}} dx$	$\begin{array}{c} Asp \rightarrow 0 \\ \int dx \rightarrow 4 \end{array}$	
14	$Find \sum_{r=1}^{n} 4r^3 + 2r$	n(n+1)(n2+n+1)	
15	Therefore find $\sum_{r=11}^{20} 4r^3 + 2r$	164610	
16	Use Newton Raphson method to find x_2 for $x^4 - 5x^2 + 1 = 0$ given $x_1 = 3$	$\frac{197}{78} = 2.53$	
17	Show that the equation $x^3 + 2x - 5 = 0$ has a root between 1 and 1.5 Use linear interpolation to find this root.	f(i)=2 f(i5)=1.315 Change of sign x=1.296	o 5-
18	Find the equations of the asymptotes of $y = \frac{1+4x}{x^2-3x+6}$	4=0	
19	Use Euler's step-by-step method, with a step length of to estimate the	1 6	1
	value of y when $x = 1.02$, given that $y = 4$ when $x = 1$ and $\frac{dy}{dx} = 2^x$	y=4.04	
20	Sketch the curve $\frac{(x-2)^2}{16} + \frac{(y+3)^2}{25} = 1$ indicating where it crosses the co-ordinate the centre of the conic	•(2,-3)	
L	uxeo		-

Stude	nt Name: Target:		
	The roots of the equation $3x^2 - 9x + 2 = 0$ are α and β	23 11	
	Find the value of $\alpha^2 + \beta^2$ and $\alpha^3 + \beta^3$	翌,21	
	Using the roots above, find a quadratic equation with roots $\frac{\alpha^2}{\beta}$ and $\frac{\beta^2}{\alpha}$	622-189x+	4=0
3	Solve $x^2 + 4x + 9 = 0$ giving each root in the form $a + bi$	-2 ± 15i	
	Find the complex number z such that $\frac{2}{3}z + \frac{3}{5}z^* = 15 - 30i$	225 -450 i	
i	Solve the inequality $\frac{x+3}{2x-1} \ge 2$	\(\frac{1}{2}\) \(\frac{7}{3}\) \(\frac{5}{3}\) \(\frac{5}{3}	
5	Work out $\begin{bmatrix} -3 & -7 \\ -2 & 8 \end{bmatrix} \begin{bmatrix} -3 & 4 & 6 & 11 \\ 4 & -3 & -9 & 5 \end{bmatrix}$	30 -32 -84 18	
7	Describe the transformation associated with the matrix: $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$	Rotale 90° anticiou about	hvise
8	Find the matrix that generates a rotation of 120° anticlockwise	$\begin{bmatrix} -1/2 & -13/2 \\ 13/2 & -1/2 \end{bmatrix}$ $X = -110 + 1211$	
9	Find the general solution, in radians, of the equation $cos(40^{\circ}-2x) = cos10^{\circ}$	$x = -\pi n + \frac{1}{12}\pi$ $x = -\pi n - \frac{5}{3}\pi$	
10	Find the general solution, in degrees, of $2\cos^2 x = 2 + \sin x$	$x = -110 - \frac{5}{3611}$ x = 1800 x = 3600 - 30 and $x = 3600$	=360n-15
11	Write $\frac{1}{a} = ax + bx^2$ in the form $Y = mX + c$	in bx+a	
	Indicate clearly each of Y, X, m and c	y=mx+c	
12	A curve has equation $y = x^3 - x^2$	As h > 0	
	The points P and Q lie on the curve and have x-coordinates 3 and 3+h.	dy = 21	
	Find the gradient of the curve at point P.		-
13	Determine whether the following integral exists and, if so, find its value.	As p->0	
	$\int_{0}^{8} x^{-\frac{1}{3}} dx = \left[\frac{3x^{2/3}}{2} \right]_{\rho}^{8} = \frac{12}{2} - \frac{3\rho^{2/3}}{2}$	Sdx > 6	
14	Find $\sum_{r=1}^{n} 2r^3 + 3r^2 + 1$	$\int dx \to 6$ $\frac{1}{2} n \left(n^3 + 4 n^2 + 4 n + 3 \right)$	
15	Therefore find $\sum_{r=41}^{50} 2r^3 + 3r^2 + 1$	1968815	
16	Use Newton Raphson method to find x_2 for $24x^3 + 36x^2 + 18x - 5 = 0$	0.193	
	given $x_1 = 0.2$	0.110	
17	Show that the equation $\sin x + 3x - 5 = 0$ has a root between 1 and 2. Use linear interpolation to find this root. (Fur calc in radians)	f(1)=-1.1585 chu $f(2)=1.9093$ si	
18	Find the equations of the asymptotes of $y = \frac{2x-5}{x^2-4}$	x=2, $x=-2y=0$	
19	Use Euler's step-by-step method, with a step length of 0.25 to estimate the		
	value of y when $x = 2.5$, given that $y = -1$ when $x = 2$ and $\frac{dy}{dx} = \sqrt{x^4 + 9}$	6.13	
20	Find the possible values of m such that the line $y = m(x+2)$ is a tangent	m-+1	

to the parabola with equation $y^2 = x - 2$